The Sasaki–Ricci Flow on Sasakian 3-Spheres

Guofang Wang , Yongbing Zhang

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (1) : 43 -71.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (1) : 43 -71. DOI: 10.1007/s40304-013-0005-7
Original Article

The Sasaki–Ricci Flow on Sasakian 3-Spheres

Author information +
History +
PDF

Abstract

We show that on a Sasakian 3-sphere the Sasaki–Ricci flow initiating from a Sasakian metric of positive transverse scalar curvature converges to a gradient Sasaki–Ricci soliton. We also show the existence and uniqueness of gradient Sasaki–Ricci soliton on each Sasakian 3-sphere.

Keywords

Sasaki–Ricci flow / Sasaki–Ricci soliton / Weighted Sasakian structure

Cite this article

Download citation ▾
Guofang Wang, Yongbing Zhang. The Sasaki–Ricci Flow on Sasakian 3-Spheres. Communications in Mathematics and Statistics, 2013, 1(1): 43-71 DOI:10.1007/s40304-013-0005-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belgun F.A. On the metric structure of non-Kähler complex surfaces. Math. Ann.. 2000, 317 1 1-40

[2]

Belgun F.A. Normal CR structures on compact 3-manifolds. Math. Z.. 2001, 238 3 441-460

[3]

Boyer C.P., Galicki K. On Sasakian–Einstein geometry. Int. J. Math.. 2000, 11 873-909

[4]

Boyer C.P., Galicki K. New Einstein metrics in dimension five. J. Differ. Geom.. 2001, 57 443-463

[5]

Boyer C., Galicki K. Sasakian Geometry. 2008 New York: Oxford Univ. Press

[6]

Boyer C.P., Galicki K., Nakamaye M. On the geometry of Sasakian–Einstein 5-manifolds. Math. Ann.. 2003, 325 485-524

[7]

Boyer C.P., Galicki K., Kollór J. Einstein metrics on spheres. Ann. Math.. 2005, 162 557-580

[8]

Boyer C.P., Galicki K., Matzeu P. On eta-Einstein Sasakian geometry. Commun. Math. Phys.. 2006, 262 177-208

[9]

Cao H.D. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math.. 1985, 81 359-372

[10]

Chow B. The Ricci flow on the 2-sphere. J. Differ. Geom.. 1991, 33 2 325-334

[11]

Chow B., Wu L.-F. The Ricci flow on compact 2-orbifolds with curvature negative somewhere. Commun. Pure Appl. Math.. 1991, 44 3 275-286

[12]

Futaki A., Ono H., Wang G. Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom.. 2009, 83 3 585-635

[13]

Gauduchon P., Ornea L. Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier (Grenoble). 1998, 48 4 1107-1127

[14]

Gauntlett J.P., Martelli D., Sparks J., Waldram W. Sasaki–Einstein metrics on S 2×S 3. Adv. Theor. Math. Phys.. 2004, 8 711-734

[15]

Gauntlett J.P., Martelli D., Sparks J., Waldram W. A new infinite class of Sasaki–Einstein manifolds. Adv. Theor. Math. Phys.. 2004, 8 987-1000

[16]

Geiges H. Normal contact structures on 3-manifolds. Tohoku Math. J.. 1997, 49 3 415-422

[17]

Gray A. Tubes. 2004 2 Basel: Birkhäuser

[18]

Hamilton R.S. The Ricci flow on surfaces. Mathematics and general relativity. 1988 Providence: Amer. Math. Soc.. 237-262

[19]

Lovrić M., Min-Oo M., Ruh E.A. Deforming transverse Riemannian metrics of foliations. Asian J. Math.. 2000, 4 2 303-314

[20]

Martelli D., Sparks J., Yau S.-T. Sasaki–Einstein manifolds and volume minimisation. Commun. Math. Phys.. 2008, 280 3 611-673

[21]

Smoczyk K., Wang G., Zhang Y.B. The Sasaki–Ricci flow. Int. J. Math.. 2010, 21 7 951-969

[22]

Wu L.-f. The Ricci flow on 2-orbifolds with positive curvature. J. Differ. Geom.. 1991, 33 2 575-596

[23]

Ye, R.: Entropy functionals, Sobolev inequalities and kappa-noncollapsing estimates along the Ricci flow. arXiv:0709.2724v1

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/