On Poincaré Series of Unicritical Polynomials at the Critical Point

Juan Rivera-Letelier , Weixiao Shen

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (1) : 1 -17.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (1) : 1 -17. DOI: 10.1007/s40304-013-0002-x
Article

On Poincaré Series of Unicritical Polynomials at the Critical Point

Author information +
History +
PDF

Abstract

In this paper, we show that for a unicritical polynomial having a priori bounds, the unique conformal measure of minimal exponent has no atom at the critical point. For a conformal measure of higher exponent, we give a necessary and sufficient condition for the critical point to be an atom, in terms of the growth rate of the derivatives at the critical value.

Keywords

Complex dynamics / Julia sets / Poincaré series / Summability condition

Cite this article

Download citation ▾
Juan Rivera-Letelier, Weixiao Shen. On Poincaré Series of Unicritical Polynomials at the Critical Point. Communications in Mathematics and Statistics, 2013, 1(1): 1-17 DOI:10.1007/s40304-013-0002-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carleson L., Gamelin T.W. Complex Dynamics. 1993 New York: Springer

[2]

Denker M., Urbański M. On Sullivan’s conformal measures for rational maps of the Riemann sphere. Nonlinearity. 1991, 4 2 365-384

[3]

Graczyk J., Smirnov S. Non-uniform hyperbolicity in complex dynamics. Invent. Math.. 2009, 175 2 335-415

[4]

Hubbard J.H. Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz. Topological Methods in Modern Mathematics. 1993 Houston: Publish or Perish. 467-511

[5]

Kahn J., Lyubich M. A priori bounds for some infinitely renormalizable quadratics. II. Decorations. Ann. Sci. Éc. Norm. Super. (4). 2008, 41 1 57-84

[6]

Kahn J., Lyubich M. Local connectivity of Julia sets for unicritical polynomials. Ann. Math. (2). 2009, 170 1 413-426

[7]

Kozlovski O., van Strien S. Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. Lond. Math. Soc. (3). 2009, 99 2 275-296

[8]

Li H.B., Shen W.X. On non-uniform hyperbolicity assumptions in one-dimensional dynamics. Sci. China Math.. 2010, 53 7 1663-1677

[9]

Li H., Shen W. Topological invariance of a strong summability condition in one-dimensional dynamics. Int. Math. Res. Not.. 2011

[10]

Levin G., van Strien S. Local connectivity of the Julia set of real polynomials. Ann. Math. (2). 1998, 147 3 471-541

[11]

Levin G., van Strien S. Bounds for maps of an interval with one critical point of inflection type. II. Invent. Math.. 2000, 141 2 399-465

[12]

Lyubich M. Dynamics of quadratic polynomials, I–II. Acta Math.. 1997, 178 2 185-297

[13]

McMullen C.T. Complex Dynamics and Renormalization. 1994 Princeton: Princeton University Press

[14]

McMullen C.T. Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps. Comment. Math. Helv.. 2000, 75 4 535-593

[15]

Milnor J. Dynamics in One Complex Variable. 2006 3 Princeton: Princeton University Press

[16]

Prado E.A. Ergodicity of conformal measures for unimodal polynomials. Conform. Geom. Dyn.. 1998, 2 29-44

[17]

Przytycki F., Rivera-Letelier J. Statistical properties of topological Collet–Eckmann maps. Ann. Sci. Éc. Norm. Super. (4). 2007, 40 1 135-178

[18]

Przytycki F., Rivera-Letelier J., Smirnov S. Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math.. 2003, 151 1 29-63

[19]

Przytycki F., Rivera-Letelier J., Smirnov S. Equality of pressures for rational functions. Ergod. Theory Dyn. Syst.. 2004, 24 3 891-914

[20]

Przytycki F. Lyapunov characteristic exponents are nonnegative. Proc. Am. Math. Soc.. 1993, 119 1 309-317

[21]

Przytycki F. Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Am. Math. Soc.. 1999, 351 5 2081-2099

[22]

Przytycki F., Urbański M. Conformal Fractals: Ergodic Theory Methods. 2010 Cambridge: Cambridge University Press

[23]

Rivera-Letelier J. A connecting lemma for rational maps satisfying a no-growth condition. Ergod. Theory Dyn. Syst.. 2007, 27 2 595-636

[24]

Rivera-Letelier, J., Shen, W.: Statistical properties of one-dimensional maps under weak hyperbolicity assumptions (2010). arXiv:1004.0230v1

[25]

Sullivan D. Conformal dynamical systems. Geometric Dynamics. 1983 Berlin: Springer. 725-752

[26]

Urbański M. Measures and dimensions in conformal dynamics. Bull. Am. Math. Soc. (N. S.). 2003, 40 3 281-321

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/