Combinatorial Independence and Sofic Entropy
David Kerr , Hanfeng Li
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 213 -257.
Combinatorial Independence and Sofic Entropy
We undertake a local analysis of combinatorial independence as it connects to topological entropy within the framework of actions of sofic groups.
Independence / Sofic entropy / Loeb space / Algebraic action / Fuglede-Kadison determinant / Li-Yorke chaos
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Chung, N.-P., Li, H.: Homoclinic groups, IE groups, and expansive algebraic actions. Preprint, 2011 |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Kerr, D.: Sofic measure entropy via finite partitions. Groups Geom. Dyn., in press |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
Kerr, D., Li, H.: Soficity, amenability, and dynamical entropy. Am. J. Math., in press |
| [25] |
|
| [26] |
|
| [27] |
Li, H., Thom, A.: Entropy, determinants, and L 2-torsion. Preprint, 2012 |
| [28] |
|
| [29] |
|
| [30] |
Lind, D., Schmidt, K., Verbitskiy, E.: Homoclinic points, atoral polynomials, and periodic points of algebraic ℤ d-actions. Ergod. Theory Dyn. Syst. doi:10.1017/S014338571200017X |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Paunescu, L.: A convex structure on sofic embeddings. Ergod. Theory Dynam. Syst., in press |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
/
| 〈 |
|
〉 |