Combinatorial Independence and Sofic Entropy

David Kerr , Hanfeng Li

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 213 -257.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 213 -257. DOI: 10.1007/s40304-013-0001-y
Article

Combinatorial Independence and Sofic Entropy

Author information +
History +
PDF

Abstract

We undertake a local analysis of combinatorial independence as it connects to topological entropy within the framework of actions of sofic groups.

Keywords

Independence / Sofic entropy / Loeb space / Algebraic action / Fuglede-Kadison determinant / Li-Yorke chaos

Cite this article

Download citation ▾
David Kerr, Hanfeng Li. Combinatorial Independence and Sofic Entropy. Communications in Mathematics and Statistics, 2013, 1(2): 213-257 DOI:10.1007/s40304-013-0001-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alekseev M.A., Glebskiı̌ L.Yu., Gordon E.I. On approximations of groups, group actions and Hopf algebras. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 1999

[2]

Auslander J. Minimal Flows and Their Extensions. 1988 Amsterdam: North-Holland

[3]

Blanchard F., Glasner E., Kolyada S., Maass A. On Li-Yorke pairs. J. Reine Angew. Math.. 2002, 547 51-68

[4]

Blanchard F., Lacroix Y. Zero entropy factors of topological flows. Proc. Am. Math. Soc.. 1993, 119 3 985-992

[5]

Bowen L. Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc.. 2010, 23 1 217-245

[6]

Bowen L. Entropy for expansive algebraic actions of residually finite groups. Ergod. Theory Dyn. Syst.. 2011, 31 3 703-718

[7]

Chung, N.-P., Li, H.: Homoclinic groups, IE groups, and expansive algebraic actions. Preprint, 2011

[8]

Deninger C. Fuglede-Kadison determinants and entropy for actions of discrete amenable groups. J. Am. Math. Soc.. 2006, 19 3 737-758

[9]

Deninger C. Mahler measures and Fuglede–Kadison determinants. Münster J. Math.. 2009, 2 45-63

[10]

Deninger C., Schmidt K. Expansive algebraic actions of discrete residually finite amenable groups and their entropy. Ergod. Theory Dyn. Syst.. 2007, 27 3 769-786

[11]

Einsiedler M., Ward T. Ergodic Theory, with a View Towards Number Theory. 2011 London: Springer

[12]

Elek G., Szabo E. Sofic representations of amenable groups. Proc. Am. Math. Soc.. 2011, 139 4285-4291

[13]

Glasner E. Ergodic Theory Via Joinings. 2003 Providence: Am. Mat. Soc.

[14]

Glasner E. On tame enveloping semigroups. Colloq. Math.. 2006, 105 2 283-295

[15]

Glasner E., Weiss B. Quasi-factors of zero entropy systems. J. Am. Math. Soc.. 1995, 8 3 665-686

[16]

Glasner E., Ye X. Local entropy theory. Ergod. Theory Dyn. Syst.. 2009, 29 2 321-356

[17]

Gromov M. Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc.. 1999, 1 2 109-197

[18]

Huang W., Ye X. A local variational relation and applications. Isr. J. Math.. 2006, 151 237-279

[19]

Karpovsky M.G., Milman V.D. Coordinate density of sets of vectors. Discrete Math.. 1978, 24 2 177-184

[20]

Kerr, D.: Sofic measure entropy via finite partitions. Groups Geom. Dyn., in press

[21]

Kerr D., Li H. Independence in topological and C -dynamics. Math. Ann.. 2007, 338 4 869-926

[22]

Kerr D., Li H. Combinatorial independence in measurable dynamics. J. Funct. Anal.. 2009, 256 5 1341-1386

[23]

Kerr D., Li H. Entropy and the variational principle for actions of sofic groups. Invent. Math.. 2011, 186 3 501-558

[24]

Kerr, D., Li, H.: Soficity, amenability, and dynamical entropy. Am. J. Math., in press

[25]

Köhler A. Enveloping semigroups for flows. Proc. R. Ir. Acad., Sect. A. 1995, 95 2 179-191

[26]

Li H. Compact group automorphisms, addition formulas and Fuglede-Kadison determinants. Ann. Math. (2). 2012, 176 1 303-347

[27]

Li, H., Thom, A.: Entropy, determinants, and L 2-torsion. Preprint, 2012

[28]

Li T.Y., Yorke J.A. Period three implies chaos. Am. Math. Mon.. 1975, 82 10 985-992

[29]

Lind D., Schmidt K., Verbitskiy E. Entropy and growth rate of periodic points of algebraic ℤ d-actions. Dynamical Numbers: Interplay Between Dynamical Systems and Number Theory. 2010 Providence: Am. Math. Soc.. 195-211

[30]

Lind, D., Schmidt, K., Verbitskiy, E.: Homoclinic points, atoral polynomials, and periodic points of algebraic ℤ d-actions. Ergod. Theory Dyn. Syst. doi:10.1017/S014338571200017X

[31]

Lind D., Schmidt K., Ward T. Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math.. 1990, 101 3 593-629

[32]

Loeb P.A. Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Am. Math. Soc.. 1975, 211 113-122

[33]

Ornstein D.S., Weiss B. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math.. 1987, 48 1-141

[34]

Parry W. Zero entropy of distal and related transformations. Topological Dynamics. 1968 New York: Benjamin. 383-389

[35]

Paunescu, L.: A convex structure on sofic embeddings. Ergod. Theory Dynam. Syst., in press

[36]

Sauer N. On the density of families of sets. J. Comb. Theory, Ser. A. 1972, 13 145-147

[37]

Schmidt K., Verbitskiy E. Abelian sandpiles and the harmonic model. Commun. Math. Phys.. 2009, 292 3 721-759

[38]

Shelah S. A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math.. 1972, 41 247-261

[39]

de Vries J. Elements of Topological Dynamics. 1993 Dordrecht: Kluwer Academic

[40]

Zhang G. Local variational principle concerning entropy of sofic group action. J. Funct. Anal.. 2012, 262 1954-1985

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/