2021-09-06 2021, Volume 4 Issue 3

  • Select all
  • review-article
    Yu Zong, Mark Pegram

    Triple-negative breast cancer (TNBC) is a pathological term used to identify invasive breast cancers that lack expression of estrogen and progesterone receptors and do not have pathologic overexpression of the HER2 receptor or harbor ERBB2 gene amplification. TNBC includes a collection of multiple distinct disease entities based upon genomic, transcriptomic and phenotypic characterization. Despite improved clinical outcomes with the development of novel therapeutics, TNBC still yields the worst prognosis among all clinical subtypes of breast cancer. We will systematically review evidence of the genomic evolution of TNBC, as well as potential mechanisms of disease progression and treatment resistance, defined in part by advances in next-generation DNA sequencing technology (including single cell sequencing), providing a new perspective on treatment strategies, and promise to reveal new potential therapeutic targets. Moreover, we review novel therapies aimed at homologous recombination deficiency, PI3 kinase/AKT/PTEN pathway activation, androgen receptor blockade, immune checkpoint inhibition, as well as antibody-drug conjugates engaging novel cell surface targets, including recent progress in pre-clinical and clinical studies which further validate the role of targeted therapies in TNBC. Despite major advances in treatment for TNBC, including FDA approval of 2 PARP inhibitors for metastatic TNBC, the crossing of the superiority boundary in a phase 3, placebo-controlled study of adjuvant olaparib in early-stage patients with germline BRCA-mutated high-risk HER2-negative early breast cancer, the FDA approval of 2 PD-(L)1 checkpoint antibodies for metastatic TNBC, and the FDA approval of the first antibody drug conjugate for TNBC, significant challenges remain. For example, despite the dawn of immunotherapy in metastatic TNBC, durable responses are limited to a small subset of patients, definitive biomarkers for patient selection are lacking, and the Oncology Drug Advisory Committee to the FDA has recently voted against approval of an anti-PD-1 checkpoint antibody high risk early-stage TNBC in the neoadjuvant setting. Also, despite early positive randomized phase 2 studies of AKT inhibition in metastatic TNBC, a recent phase 3 registration trial failed to validate earlier phase 2 data. Finally, we note that level one evidence for clinical efficacy of androgen receptor blockade in TNBC is still lacking. To meet these and other challenges, we will catalogue the ongoing exponential increase in interest in basic, translational, and clinical research to develop new treatment paradigms for TNBC.

  • review-article
    Michael Conroy, Darren Cowzer, Walter Kolch, Austin G. Duffy

    RAS oncogenes are the most commonly mutated oncogenes in human cancer, and RAS-mutant cancers represent a major burden of human disease. Though these oncogenes were discovered decades ago, recent years have seen major advances in understanding of their structure and function, including the therapeutic and prognostic significance of diverse isoforms. Targeting of these mutations has proven difficult, despite some successes with inhibition of RAS effector signalling. More recently, direct RAS inhibition has been achieved in a trial setting. While this has yet to be translated to everyday clinical practice, this development carries much promise. This review summarizes the diverse approaches that have been taken to RAS inhibition and then focuses on the most recent developments in direct inhibition of KRAS(G12C).

  • review-article
    Elisabetta Pietri, Rita Balsano, Matilde Coriano, Fabio Gelsomino, Francesco Leonardi, Simona Bui, Letizia Gnetti, Raffaele Dalla Valle, Ingrid Garajová

    Pancreatic cancer is one of the most aggressive diseases among solid tumors. Most patients are diagnosed with advanced or metastatic disease and are characterized by poor chemosensitivity. Therefore, earlier diagnosis and novel therapeutic possibilities for pancreatic cancer patients are urgently needed. Liquid biopsy is an emerging technology that allows the noninvasive sampling of tumor material. Nowadays, liquid biopsy has shown promising results as diagnostic, prognostic and predictive biomarkers, but it has not yet been universally adopted into regular use by clinicians. In this review, we describe different components of liquid biopsy, especially circulating tumor cells, circulating tumor DNA and exosomes and their potential clinical utility for pancreatic cancer patients.

  • review-article
    Natasha Rinne, Elizabeth L. Christie, Anastasia Ardasheva, Chun Hei Kwok, Nikita Demchenko, Caroline Low, Catherine Tralau-Stewart, Christina Fotopoulou, Paula Cunnea

    The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.

  • review-article
    Alice Romagnoli, Cristina Maracci, Mattia D’Agostino, Anna La Teana, Daniele Di Marino

    Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor stability and high toxicity in vivo. This minireview explores the possibility of targeting mTOR and eIF4E proteins, thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies and specific inhibitors that have been shown to have an effect on other kinds of cancers.

  • review-article
    John K. Cowell, Tianxiang Hu

    Myeloid and lymphoid neoplasms with eosinophilia and FGFR1 rearrangements (MLN-eo FGFR1) disease is derived from a pluripotent hematopoietic stem cell and has a complex presentation with a myeloproliferative disorder with or without eosinophilia and frequently presents with mixed lineage T- or B-lymphomas. The myeloproliferative disease frequently progresses to AML and lymphoid neoplasms can develop into acute lymphomas. No matter the cell type involved, or clinical presentation, chromosome translocations involving the FGFR1 kinase and various partner genes, which leads to constitutive activation of downstream oncogenic signaling cascades. These patients are not responsive to treatment regimens developed for other acute leukemias and survival is poor. Recent development of specific FGFR1 inhibitors has suggested an alternative therapeutic approach but resistance is likely to evolve over time. Mouse models of this disease syndrome have been developed and are being used for preclinical evaluation of FGFR1 inhibitors. Cell lines from these models have now been developed and have been used to investigate the mechanisms of resistance that might be expected in clinical cases. So far, a V561M mutation in the kinases domain and deletion of PTEN have been recognized as leading to resistance and both operate through the PI3K/AKT signaling axis. One of the important consequences is the suppression of PUMA, a potent enforcer of apoptosis, which operates through BCL2. Targeting BCL2 in the resistant cells leads to suppression of leukemia development in mouse models, which potentially provides an opportunity to treat patients that become resistant to FGFR1 inhibitors. In addition, elucidation of molecular mechanisms underlying FGFR1-driven leukemias and lymphomas also provides new targets for combined treatment as another option to bypass the FGFR1 inhibitor resistance and improve patient outcome.

  • review-article
    Jordan M. Hotz, Joanna R. Thomas, Emily N. Katz, Robert W. Robey, Sachi Horibata, Michael M. Gottesman

    The brain is protected from toxins by a tightly regulated network of specialized cells, including endothelial cells, pericytes, astrocyes, and neurons, known collectively as the blood-brain barrier (BBB). This selectively permeable barrier permits only the most crucial molecules essential for brain function to enter and employs a number of different mechanisms to prevent the entry of potentially harmful toxins and pathogens. In addition to a physical barrier comprised of endothelial cells that form tight junctions to restrict paracellular transport, there is an active protective mechanism made up of energy-dependent transporters that efflux compounds back into the bloodstream. Two of these ATP-binding cassette (ABC) transporters are highly expressed at the BBB: P-glycoprotein (P-gp, encoded by the ABCB1 gene) and ABCG2 (encoded by the ABCG2 gene). Although a number of in vitro and in vivo systems have been developed to examine the role that ABC transporters play in keeping compounds out of the brain, all have inherent advantages and disadvantages. Zebrafish (Danio rerio) have become a model of interest for studies of the BBB due to the similarities between the zebrafish and mammalian BBB systems. In this review, we discuss what is known about ABC transporters in zebrafish and what information is still needed before the zebrafish can be recommended as a model to elucidate the role of ABC transporters at the BBB.

  • review-article
    Kyung Bo Kim

    With proteasome inhibitors (PIs) becoming clinically available since 2003, outcomes for patients with multiple myeloma (MM) have dramatically changed, improving quality of life and survival. Despite the impressive treatment success, however, almost all MM patients who initially respond to these PIs eventually develop resistance. Furthermore, a portion of MM patients is inherently unresponsive to the PIs. Extensive mechanistic investigations identified several non-proteasomal signaling pathways suspected to be linked to the PI resistance, for which several excellent reviews are currently available. On the other hand, it is still unclear how cancer cells under high PI environments adapt to spare proteasome activity essential for survival and proliferation regardless of cancer evolution stages. This review outlines current progress towards understanding the proteasomal adaptations of cells in response to PI treatment to maintain necessary proteasome activity. A better understanding of cellular proteasomal changes in response to the PIs could provide a rationale to develop new therapeutics that could be used to overcome resistance to existing PI drugs.

  • review-article
    Sanam Shahid, Susan E. Prockop

    Post-transplant lymphoproliferative disorder (PTLD) is a rare but life-threatening complication of both allogeneic solid organ (SOT) and hematopoietic cell transplantation (HCT). The histology of PTLD ranges from benign polyclonal lymphoproliferation to a lesion indistinguishable from classic monoclonal lymphoma. Most commonly, PTLDs are Epstein-Barr virus (EBV) positive and result from loss of immune surveillance over EBV. Treatment for PTLD differs from the treatment for typical non-Hodgkin lymphoma because prognostic factors are different, resistance to treatment is unique, and there are specific concerns for organ toxicity. While recipients of HCT have a limited time during which they are at risk for this complication, recipients of SOT have a lifelong requirement for immunosuppression, so approaches that limit compromising or help restore immune surveillance are of high interest. Furthermore, while EBV-positive and EBV-negative PTLDs are not intrinsically resistant to chemotherapy, the poor tolerance of chemotherapy in the post-transplant setting makes it essential to minimize potential treatment-related toxicities and explore alternative treatment algorithms. Therefore, reduced-toxicity approaches such as single-agent CD20 monoclonal antibodies or bortezomib, reduced dosing of standard chemotherapeutic agents, and non-chemotherapy-based approaches such as cytotoxic T cells have all been explored. Here, we review the chemotherapy and non-chemotherapy treatment landscape for PTLD.

  • review-article
    Ufuk Degirmenci, Jiajun Yap, Yuen Rong M. Sim, Shiru Qin, Jiancheng Hu

    Hyperactive RAS/RAF/MEK/ERK signaling has a well-defined role in cancer biology. Targeting this pathway results in complete or partial regression of most cancers. In recent years, cancer genomic studies have revealed that genetic alterations that aberrantly activate the RAS/RAF/MEK/ERK signaling mainly occur on RAF or upstream, which motivated the extensive development of RAF inhibitors for cancer therapy. Currently, the first-generation RAF inhibitors have been approved for treating late-stage cancers with BRAF(V600E) mutations. Although these inhibitors have achieved promising outcomes in clinical treatments, their efficacy is abolished by quick-rising drug resistance. Moreover, cancers with hyperactive RAS exhibit intrinsic resistance to these drugs. To resolve these problems, the second-generation RAF inhibitors have been designed and are undergoing clinical evaluations. Here, we summarize the recent findings from mechanistic studies on RAF inhibitor resistance and discuss the critical issues in the development of next-generation RAF inhibitors with better therapeutic index, which may provide insights for improving targeted cancer therapy with RAF inhibitors.

  • review-article
    Haiyun Zhang, Alexander Steed, Milo Co, Xiaozhuo Chen

    The cancer stem cell (CSC) state and epithelial-mesenchymal transition (EMT) activation are tightly interconnected. Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes to maintain low reactive oxygen species levels and stemness, enhanced drug transporters, anti-apoptotic machinery and DNA repair system. Factors present in the tumor microenvironment such as hypoxia and the communication with non-cancer stromal cells also promote cancer cells to enter the EMT/CSC state and display related resistance. ATP, particularly the high levels of intratumoral extracellular ATP functioning through both signaling pathways and ATP internalization, induces and regulates EMT and CSC. The three of them work together to enhance drug resistance. New findings in each of these factors will help us explore deeper into mechanisms of drug resistance and suggest new resistance-associated markers and therapeutic targets.

  • review-article
    Jean-Marie Michot, Alice Buet-Elfassy, Maxime Annereau, Julien Lazarovici, Alina Danu, Clémentine Sarkozy, Claude Chahine, Camille Bigenwald, Jacques Bosq, Julien Rossignol, Patricia Romano-Martin, Capucine Baldini, David Ghez, Peggy Dartigues, Christophe Massard, Vincent Ribrag

    Aim: Anti-CD20 monoclonal antibody is a cornerstone therapy for follicular lymphoma. Following anti-CD20 therapy, a potential decrease in CD20 antigen, and therefore a loss of the tumor target might be expected. However, the incidence and clinical significance of CD20 loss on tumor cells in patients with relapsed or refractory follicular lymphoma are unknown. This study aims to investigate the incidence and outcome of patients with relapsed or refractory follicular lymphoma patients harboring the loss of the tumor target, CD20.

    Methods: All consecutive adult patients with relapsed or refractory follicular lymphoma referred to the Early Drug Department at Gustave Roussy were included. The main objectives were to assess the incidence and prognosis of the loss in expression of CD20 antigen on the surface of tumor cells on patient outcome.

    Results: Over the study period 2013-2018, 131 patients were screened for clinical trials with B-cell malignancies in the early drug department of Gustave Roussy in France. Forty-four patients presented with relapsed or refractory follicular lymphoma and 32 had tumor biopsies at the time of relapse that were retained for analysis. The median (range) age was 67.5 years (55.3-75.3) and the median number of prior anti-cancer systemic therapies was 3 (2-4). At the time of relapse, CD20 expression was positive in 84% of tumors (n = 27) and negative in 16% of tumors (n = 5). At a median follow-up of 18.3 (0.6-83.3) months, CD20 negativity was associated with a poorer prognosis with a median overall survival of 8.9 months (95%CI: 2.4-19.1) in comparison to CD20 positive patients (28.3 months, 95%CI: 25.1-75.3 months, P = 0.019).

    Conclusion: The loss of the tumor target antigen, CD20, occurred in 16% of patients with relapse or refractory follicular lymphoma. Due to confounding factors in patients who received anti-CD20 immunotherapy, it was not possible to formally establish the prognostic significance of CD20 negativity. However, we suggest that a check for CD20 antigen positivity nevertheless be performed to adapt subsequent therapies for patients with relapsed or refractory follicular lymphoma.

  • review-article
    I.V. Bijnsdorp, Godefridus J. Peters

    Aim: Thynidine phosphorylase (TP) acts as a proangiogenic growth factor which may regulate mammalian Target of Rapamycin (mTOR). We investigated whether the TP substrate thymidine and overexpression of TP affected mTOR signaling by comparing Colo320 (TP deficient) cells and its TP-transfected variant (Colo320TP1).

    Methods: Drug resistance was assessed with the sulforhodamine B assay, protein expression with Western blotting, cell cycle distribution and cell death with Fluorescence-activated cell sorting analysis, and autophagy with immunofluorescence.

    Results: Colo320 and Colo320TP1 cells had comparable levels of sensitivity to the mTOR inhibitor rapamycin. Thymidine treatment led to 13- and 50-fold resistance to rapamycin in Colo320 and Colo320TP1 cells, respectively. In Colo320TP1 cells, the thymidine phosphorylase inhibitor (TPI) reversed the thymidine induced resistance to rapamycin, but not in Colo320 cells, indicating a role for TP in the protection. Thymidine increased p70/S6k-phosphorylation (downstream of mTOR) in Colo320TP1, but it was not affected in Colo320. As a mechanism behind resistance, we studied the levels of autophagy and found that, in Colo320TP1 cells, autophagy was highly induced by thymidine-rapamycin, which was decreased by TPI. In addition, the autophagy inhibitor 3-methyl-adenine completely inhibited autophagy and its protection.

    Conclusion: Rapamycin resistance in TP-expressing cancer cells may therefore be related to thymidine-mediated autophagy activation.

  • review-article
    Xin Yu, Xiangling Chu, Yan Wu, Juan Zhou, Jing Zhao, Fei Zhou, Chaonan Han, Chunxia Su

    Aim: Immune checkpoint inhibitors (ICIs) have dramatically changed the treatment paradigm in patients with non-small-cell lung cancer (NSCLC). However, progression patterns with immunotherapy are currently unclear and therapeutic options beyond resistance remain challenging.

    Methods: We reviewed advanced NSCLC patients between January 2016 and December 2019 who were treated with anti-PD-1/PD-L1 inhibitors in our center and identified those who developed disease progression. Later-line treatment strategies were collected and objective response rate, progression-free survival (PFS), and overall survival (OS) were assessed.

    Results: Of the 118 patients, 46 (39.0%) showed oligoprogression and 72 (61.0%) showed systemic progression. No difference in progression patterns was observed between monotherapy and combination therapy. Systemic progression was strongly associated with never-smokers (51.4% vs. 21.7%, P = 0.001) and ECOG PS = 2 (13.9% vs. 2.2%, P = 0.048) at baseline. The distribution of progression sites was roughly similar between oligoprogression and systemic progression, and the most commonly affected anatomic site was lung (66.9%), followed by bone (12.7%) and lymph nodes (11.0%). For patients beyond first disease progression, checkpoint inhibitor-based combinations could lead to a significantly longer PFS2 compared with ICIs monotherapy (9.63 months vs. 4.23 months, P = 0.004, HR = 0.394, 95%CI: 0.174-0.893) and other therapy (9.63 months vs. 4.07 months, P = 0.046, HR = 0.565, 95%CI: 0.326-0.980). Median OS of the ICIs combination group was not reached but was significantly longer than other therapy group (NR vs. 14.37 months, P = 0.010, HR = 0.332, 95%CI: 0.167-0.661).

    Conclusion: Systemic progression occurs more frequently among NSCLC patients receiving ICIs. Checkpoint inhibitor-based combinations show favorable outcomes as subsequent treatment strategies after the failure of previous ICIs treatment.

  • review-article
    Jacopo Giuliani, Andrea Bonetti