Drug resistance in targeted cancer therapies with RAF inhibitors

Ufuk Degirmenci , Jiajun Yap , Yuen Rong M. Sim , Shiru Qin , Jiancheng Hu

Cancer Drug Resistance ›› 2021, Vol. 4 ›› Issue (3) : 665 -83.

PDF
Cancer Drug Resistance ›› 2021, Vol. 4 ›› Issue (3) :665 -83. DOI: 10.20517/cdr.2021.36
review-article

Drug resistance in targeted cancer therapies with RAF inhibitors

Author information +
History +
PDF

Abstract

Hyperactive RAS/RAF/MEK/ERK signaling has a well-defined role in cancer biology. Targeting this pathway results in complete or partial regression of most cancers. In recent years, cancer genomic studies have revealed that genetic alterations that aberrantly activate the RAS/RAF/MEK/ERK signaling mainly occur on RAF or upstream, which motivated the extensive development of RAF inhibitors for cancer therapy. Currently, the first-generation RAF inhibitors have been approved for treating late-stage cancers with BRAF(V600E) mutations. Although these inhibitors have achieved promising outcomes in clinical treatments, their efficacy is abolished by quick-rising drug resistance. Moreover, cancers with hyperactive RAS exhibit intrinsic resistance to these drugs. To resolve these problems, the second-generation RAF inhibitors have been designed and are undergoing clinical evaluations. Here, we summarize the recent findings from mechanistic studies on RAF inhibitor resistance and discuss the critical issues in the development of next-generation RAF inhibitors with better therapeutic index, which may provide insights for improving targeted cancer therapy with RAF inhibitors.

Keywords

RAS/RAF/MEK/ERK signaling / RAF/KSR family kinase / oncogenic mutation / targeted therapy / RAF inhibitors / drug resistance / regulatory spine

Cite this article

Download citation ▾
Ufuk Degirmenci, Jiajun Yap, Yuen Rong M. Sim, Shiru Qin, Jiancheng Hu. Drug resistance in targeted cancer therapies with RAF inhibitors. Cancer Drug Resistance, 2021, 4(3): 665-83 DOI:10.20517/cdr.2021.36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McCubrey JA,Chappell WH.Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.Biochim Biophys Acta Mol Cell Res2007;1773:1263-84 PMCID:PMC2696318

[2]

Simanshu DK,McCormick F.RAS proteins and their regulators in human disease.Cell2017;170:17-33 PMCID:PMC5555610

[3]

Lavoie H,Therrien M.ERK signalling: a master regulator of cell behaviour, life and fate.Nat Rev Mol Cell Biol2020;21:607-32

[4]

Rauen KA.The RASopathies.Annu Rev Genomics Hum Genet2013;14:355-69 PMCID:PMC4115674

[5]

Schubbert S,Bollag G.Hyperactive Ras in developmental disorders and cancer.Nat Rev Cancer2007;7:295-308

[6]

Downward J.Targeting RAS signalling pathways in cancer therapy.Nat Rev Cancer2003;3:11-22

[7]

Malumbres M.RAS oncogenes: the first 30 years.Nat Rev Cancer2003;3:459-65

[8]

Roberts PJ.Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.Oncogene2007;26:3291-310

[9]

Dhillon AS,Rath O.MAP kinase signalling pathways in cancer.Oncogene2007;26:3279-90

[10]

Philpott C,Frayling IM,Upadhyaya M.The NF1 somatic mutational landscape in sporadic human cancers.Hum Genomics2017;11:13 PMCID:PMC5480124

[11]

Arora A.Role of tyrosine kinase inhibitors in cancer therapy.J Pharmacol Exp Ther2005;315:971-9

[12]

Zhang J,Gray NS.Targeting cancer with small molecule kinase inhibitors.Nat Rev Cancer2009;9:28-39

[13]

Petit AM,Hung MC.Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.Am J Pathol1997;151:1523-30 PMCID:PMC1858348

[14]

Martinelli E,Orditura M,Ciardiello F.Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy.Clin Exp Immunol2009;158:1-9 PMCID:PMC2759052

[15]

Cox AD,Kimmelman AC,Der CJ.Drugging the undruggable RAS: mission possible?.Nat Rev Drug Discov2014;13:828-51 PMCID:PMC4355017

[16]

Moore AR,McCormick F.RAS-targeted therapies: is the undruggable drugged?.Nat Rev Drug Discov2020;19:533-52 PMCID:PMC7809886

[17]

Holderfield M,McCormick F.Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond.Nat Rev Cancer2014;14:455-67 PMCID:PMC4250230

[18]

Maurer G,Baccarini M.Raf kinases in cancer-roles and therapeutic opportunities.Oncogene2011;30:3477-88

[19]

Yuan J,Yap J.The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy.J Hematol Oncol2020;13:113 PMCID:PMC7433213

[20]

Degirmenci U,Hu J.Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.Cells2020;9:198 PMCID:PMC7017232

[21]

Tsai J,Wang W.Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.Proc Natl Acad Sci U S A2008;105:3041-6 PMCID:PMC2268581

[22]

Laquerre S,Moss K.Abstract B88: a selective Raf kinase inhibitor induces cell death and tumor regression of human cancer cell lines encoding B-RafV600E mutation.Mol Cancer Ther2009;8:B88

[23]

Stuart DD,Poon DJ.Abstract 3790: preclinical profile of LGX818: a potent and selective RAF kinase inhibitor.Cancer Res2012;72:3790

[24]

Bollag G,Tsai J.Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma.Nature2010;467:596-9 PMCID:PMC2948082

[25]

Robert C,Schachter J.Improved overall survival in melanoma with combined dabrafenib and trametinib.N Engl J Med2015;372:30-9

[26]

Dummer R,Gogas HJ.Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial.Lancet Oncol2018;19:1315-27

[27]

Dummer R,Gogas HJ.Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.Lancet Oncol2018;19:603-15

[28]

Heidorn SJ,Whittaker S.Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF.Cell2010;140:209-21 PMCID:PMC2872605

[29]

Hatzivassiliou G,Yen I.RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.Nature2010;464:431-5

[30]

Poulikakos PI,Bollag G,Rosen N.RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF.Nature2010;464:427-30 PMCID:PMC3178447

[31]

Poulikakos PI,Janakiraman M.RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).Nature2011;480:387-90 PMCID:PMC3266695

[32]

Ribas A.BRAF targeted therapy changes the treatment paradigm in melanoma.Nat Rev Clin Oncol2011;8:426-33

[33]

Gibney GT,Fedorenko IV,Smalley KSM.Paradoxical oncogenesis-the long-term effects of BRAF inhibition in melanoma.Nat Rev Clin Oncol2013;10:390-9 PMCID:PMC3983565

[34]

Wellbrock C,Marais R.The RAF proteins take centre stage.Nat Rev Mol Cell Biol2004;5:875-85

[35]

Scolnick EM,Williams D.Studies on the nucleic acid sequences of Kirsten sarcoma virus: a model for formation of a mammalian RNA-containing sarcoma virus.J Virol1973;12:458-63 PMCID:PMC356651

[36]

Hager GL,Chan HW.Molecular cloning of the Harvey sarcoma virus closed circular DNA intermediates: initial structural and biological characterization.J Virol1979;31:795-809 PMCID:PMC353507

[37]

Tsuchida N.Structure and functions of the Kirsten murine sarcoma virus genome: molecular cloning of biologically active Kirsten murine sarcoma virus DNA.J Virol1981;38:720-7 PMCID:PMC171202

[38]

Ellis RW,Shih TY.The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes.Nature1981;292:506-11

[39]

Rapp UR,Mark GE.Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus.Proc Natl Acad Sci U S A1983;80:4218-22 PMCID:PMC384008

[40]

Sutrave P,Rapp UR,Patschinsky T.Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf.Nature1984;309:85-8

[41]

Kamata T.Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins.Nature1984;310:147-50

[42]

Mulcahy LS,Stacey DW.Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells.Nature1985;313:241-3

[43]

Smith MR,Stacey DW.Requirement for c-ras proteins during viral oncogene transformation.Nature1986;320:540-3 PMCID:PMC7095476

[44]

Ambrosio L,Perrimon N.Requirement of the Drosophila raf homologue for torso function.Nature1989;342:288-91

[45]

Han M,Han Y.C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation.Nature1993;363:133-40

[46]

Ahn NG,Chan CP.Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells.J Biol Chem1990;265:11487-94

[47]

Boulton TG,Robbins DJ.ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF.Cell1991;65:663-75

[48]

Crews CM.Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product.Proc Natl Acad Sci U S A1992;89:8205-9 PMCID:PMC49886

[49]

Ray LB.Characterization of insulin-stimulated microtubule-associated protein kinase. Rapid isolation and stabilization of a novel serine/threonine kinase from 3T3-L1 cells.J Biol Chem1988;263:12721-7

[50]

Rossomando AJ,Weber MJ.Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase.Proc Natl Acad Sci U S A1989;86:6940-3 PMCID:PMC297966

[51]

Kyriakis JM,Zhang XF.Raf-1 activates MAP kinase-kinase.Nature1992;358:417-21

[52]

Moodie SA,Weber MJ.Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase.Science1993;260:1658-61

[53]

Aelst L, Barr M, Marcus S, Polverino A, Wigler M. Complex formation between RAS and RAF and other protein kinases.Proc Natl Acad Sci U S A1993;90:6213-7 PMCID:PMC46898

[54]

Vojtek AB,Cooper JA.Mammalian Ras interacts directly with the serine/threonine kinase Raf.Cell1993;74:205-14

[55]

Zhang XF,Kyriakis JM.Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1.Nature1993;364:308-13

[56]

Hancock JF.Ras proteins: different signals from different locations.Nat Rev Mol Cell Biol2003;4:373-84

[57]

Ahearn IM,Bar-Sagi D.Regulating the regulator: post-translational modification of RAS.Nat Rev Mol Cell Biol2011;13:39-51 PMCID:PMC3879958

[58]

Castellano E.Functional specificity of ras isoforms: so similar but so different.Genes Cancer2011;2:216-31 PMCID:PMC3128637

[59]

Lavoie H.Regulation of RAF protein kinases in ERK signalling.Nat Rev Mol Cell Biol2015;16:281-98

[60]

Daum G,Fries HW,Rapp UR.The ins and outs of Raf kinases.Trends Biochem Sci1994;19:474-80

[61]

Fischer A,Kuhlmann J,Wiese S.B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding.J Biol Chem2007;282:26503-16

[62]

Hu J,Yu H.Allosteric activation of functionally asymmetric RAF kinase dimers.Cell2013;154:1036-46 PMCID:PMC3844432

[63]

Dhillon AS,Grindlay GJ.The C-terminus of Raf-1 acts as a 14-3-3-dependent activation switch.Cell Signal2009;21:1645-51

[64]

Kondo Y,Banerjee S.Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases.Science2019;366:109-15 PMCID:PMC7007921

[65]

Cutler REJ,Saracino MR.Autoregulation of the Raf-1 serine/threonine kinase.Proc Natl Acad Sci U S A1998;95:9214-9 PMCID:PMC21318

[66]

Chong H.Regulation of Raf through phosphorylation and N terminus-C terminus interaction.J Biol Chem2003;278:36269-76

[67]

Yuan J,Lam PYP.The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants.Oncogene2018;37:5719-34 PMCID:PMC6202329

[68]

Roy F,Douziech M,Therrien M.KSR is a scaffold required for activation of the ERK/MAPK module.Genes Dev2002;16:427-38 PMCID:PMC155344

[69]

Nguyen A,Stock JL.Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo.Mol Cell Biol2002;22:3035-45 PMCID:PMC133772

[70]

Hu J,Kornev AP.Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. P.roc Natl Acad Sci U S A2011;108:6067-72 PMCID:PMC3076888

[71]

Rajakulendran T,Lefrançois M,Therrien M.A dimerization-dependent mechanism drives RAF catalytic activation.Nature2009;461:542-5

[72]

Shaw AS,Hu J,Taylor SS.Kinases and Pseudokinases: lessons from RAF.Mol Cell Biol2014;34:1538-46 PMCID:PMC3993607

[73]

Taylor SS,Hu J,Kornev A.Pseudokinases from a structural perspective.Biochem Soc Trans2013;41:981-6 PMCID:PMC4399968

[74]

Roskoski RJ.MEK1/2 dual-specificity protein kinases: structure and regulation.Biochem Biophys Res Commun2012;417:5-10

[75]

Mansour SJ,Matsuura JE,Ahn NG.Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1.Biochemistry1996;35:15529-36

[76]

Yuan J,Tian Z.Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis.Sci Signal2018;11:eaar6795

[77]

Roskoski RJ.ERK1/2 MAP kinases: structure, function, and regulation.Pharmacol Res2012;66:105-43

[78]

Wortzel I.The ERK cascade: distinct functions within various subcellular organelles.Genes Cancer2011;2:195-209 PMCID:PMC3128630

[79]

Buscà R,Lenormand P.ERK1 and ERK2 map kinases: specific roles or functional redundancy?.Front Cell Dev Biol2016;4:53 PMCID:PMC4897767

[80]

Shaul YD.The MEK/ERK cascade: from signaling specificity to diverse functions.Biochim Biophys Acta2007;1773:1213-26

[81]

Lake D,Müller J.Negative feedback regulation of the ERK1/2 MAPK pathway.Cell Mol Life Sci2016;73:4397-413 PMCID:PMC5075022

[82]

Kolch W.Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.Biochem J2000;351:289-305 PMCID:PMC1221363

[83]

Cseh B,Baccarini M.“RAF” neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway.FEBS Lett2014;588:2398-406 PMCID:PMC4099524

[84]

Haling JR,Yen I.Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling.Cancer Cell2014;26:402-13

[85]

Park E,Li K.Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes.Nature2019;575:545-50 PMCID:PMC7014971

[86]

Lemmon MA.Cell signaling by receptor tyrosine kinases.Cell2010;141:1117-34 PMCID:PMC2914105

[87]

McCormick F.Signal transduction. How receptors turn Ras on.Nature1993;363:15-6

[88]

Marshall M.Interactions between Ras and Raf: key regulatory proteins in cellular transformation.Mol Reprod Dev1995;42:493-9

[89]

Tran TH,Young LC.KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation.Nat Commun2021;12:1176 PMCID:PMC7895934

[90]

Lin WC,Tu HL.H-Ras forms dimers on membrane surfaces via a protein-protein interface.Proc Natl Acad Sci U S A2014;111:2996-3001 PMCID:PMC3939930

[91]

Janosi L,Hancock JF.Organization, dynamics, and segregation of Ras nanoclusters in membrane domains.Proc Natl Acad Sci U S A2012;109:8097-102 PMCID:PMC3361399

[92]

Nan X,Lewis S.Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling.Proc Natl Acad Sci U S A2013;110:18519-24 PMCID:PMC3831949

[93]

Nan X,Collisson EA.Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway.Proc Natl Acad Sci U S A2015;112:7996-8001 PMCID:PMC4491781

[94]

Liau NPD,Quinn JG.Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization.Nat Struct Mol Biol2020;27:134-41

[95]

Leicht DT,Zhu J.MEK-1 activates C-Raf through a Ras-independent mechanism.Biochim Biophys Acta2013;1833:976-86 PMCID:PMC3608709

[96]

Zhang Z,Borczuk AC.Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells.Carcinogenesis2010;31:577-86 PMCID:PMC2847094

[97]

Burotto M,Lee JM.The MAPK pathway across different malignancies: a new perspective.Cancer2014;120:3446-56 PMCID:PMC4221543

[98]

Dawson JP,Lin CC,Lemmon MA.Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface.Mol Cell Biol2005;25:7734-42 PMCID:PMC1190273

[99]

Zhang X,Shen K,Kuriyan J.An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor.Cell2006;125:1137-49

[100]

Jura N,Engel K.Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.Cell2009;137:1293-307 PMCID:PMC2814540

[101]

Du Z.Mechanisms of receptor tyrosine kinase activation in cancer.Mol Cancer2018;17:58 PMCID:PMC5817791

[102]

Yarden Y.The ERBB network: at last, cancer therapy meets systems biology.Nat Rev Cancer2012;12:553-63

[103]

Wee P.Epidermal growth factor receptor cell proliferation signaling pathways.Cancers (Basel)2017;9:52 PMCID:PMC5447962

[104]

Pahuja KB,Jaiswal BS.Actionable activating oncogenic ERBB2/HER2 transmembrane and juxtamembrane domain mutations.Cancer Cell2018;34:792-806.e5 PMCID:PMC6248889

[105]

Shigematsu H.Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers.Int J cancer2006;118:257-62

[106]

Kumar A,Halmos B.Structure and clinical relevance of the epidermal growth factor receptor in human cancer.J Clin Oncol2008;26:1742-51 PMCID:PMC3799959

[107]

Sharma SV,Settleman J.Epidermal growth factor receptor mutations in lung cancer.Nat Rev Cancer2007;7:169-81

[108]

Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer.Annu Rev Pathol2011;6:49-69

[109]

Sigismund S,Lanzetti L.Emerging functions of the EGFR in cancer.Mol Oncol2018;12:3-20 PMCID:PMC5748484

[110]

Cirenajwis H,Ekedahl H.NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics.Mol Oncol2017;11:438-451 PMCID:PMC5527484

[111]

Johnson DB,Rioth MJ.Targeted next generation sequencing identifies markers of response to PD-1 blockade.Cancer Immunol Res2016;4:959-67 PMCID:PMC5134329

[112]

Prior IA,Mattos C.A comprehensive survey of Ras mutations in cancer.Cancer Res2012;72:2457-67 PMCID:PMC3354961

[113]

Hobbs GA,Rossman KL.RAS isoforms and mutations in cancer at a glance.J Cell Sci2016;129:1287-92 PMCID:PMC4869631

[114]

Prior IA,Hartley JL.The frequency of Ras mutations in cancer.Cancer Res2020;80:2969-74 PMCID:PMC7367715

[115]

Ostrem JM,Sos ML,Shokat KM.K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions.Nature2013;503:548-51 PMCID:PMC4274051

[116]

Patricelli MP,Li LS.Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state.Cancer Discov2016;6:316-29

[117]

Janes MR,Li LS.Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor.Cell2018;172:578-89.e17

[118]

Canon J,Saiki AY.The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.Nature2019;575:217-23

[119]

Hallin J,Hargis L.The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients.Cancer Discov2020;10:54-71 PMCID:PMC6954325

[120]

Davies H,Cox C.Mutations of the BRAF gene in human cancer.Nature2002;417:949-54

[121]

Garnett MJ.Guilty as charged: B-RAF is a human oncogene.Cancer Cell2004;6:313-9

[122]

Wan PTC,Roe SM.Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF.Cell2004;116:855-67

[123]

Dankner M,Rajkumar S,Watson IR.Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations.Oncogene2018;37:3183-99

[124]

Yao Z,Rodrik-Outmezguine VS.Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS.Nature2017;548:234-8 PMCID:PMC5648058

[125]

Foster SA,Özen A.Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2.Cancer Cell2016;29:477-93

[126]

Chen SH,van Horn RD.Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120.Cancer Discov2016;6:300-15

[127]

Wagenaar TR,Roscoe B,Bolon DN.Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain.Pigment Cell Melanoma Res2014;27:124-33 PMCID:PMC4260813

[128]

Hu J,Meharena HS.Kinase regulation by hydrophobic spine assembly in cancer.Mol Cell Biol2015;35:264-76 PMCID:PMC4295384

[129]

Yap J,Tian Z.The stability of R-spine defines RAF inhibitor resistance: a comprehensive analysis of oncogenic BRAF mutants with in-frame insertion of αC-β4 loop.Sci Adv2021;7:eabg0390

[130]

Zaman A,Bivona TG.Targeting oncogenic BRAF: past, present, and future.Cancers (Basel)2019;11:1197 PMCID:PMC6721448

[131]

Baltanás FC,Rojas-Cabañeros JM.SOS GEFs in health and disease.Biochim Biophys Acta Rev Cancer2020;1874:188445

[132]

Kim G,Ning YM.FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation mutation.Clin Cancer Res2014;20:4994-5000

[133]

Hyman DM,Subbiah V.Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations.N Engl J Med2015;373:726-36 PMCID:PMC4971773

[134]

Trefzer U,Ribas A.BREAK-2: A phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma.Pigment Cell Melanoma Res2011;24:1020

[135]

Falchook GS,Kurzrock R.Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial.Lancet2012;379:1893-901 PMCID:PMC4109288

[136]

Long GV,Davies MA.Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial.Lancet Oncol2012;13:1087-95

[137]

Hauschild A,Demidov LV.Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial.Lancet2012;380:358-65

[138]

Long GV,Stroyakovskiy D.Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study.Ann Oncol2017;28:1631-9 PMCID:PMC5834102

[139]

Flaherty KT,Daud A.Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations.N Engl J Med2012;367:1694-703 PMCID:PMC3549295

[140]

Delord JP,Nyakas M.Phase I dose-escalation and -expansion study of the BRAF inhibitor encorafenib (LGX818) in metastatic BRAF-mutant melanoma.Clin Cancer Res2017;23:5339-48

[141]

King AJ,Bleam MR.Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions.PLoS One2013;8:e67583 PMCID:PMC3701070

[142]

Goldinger SM,Galliker N,Dummer R.Hyperproliferative keratinocytic cutaneous adverse events and inflammatory palmoplantar erythrodysesthesia in melanoma patients treated with encorafenib compared to other BRAF inhibitors.J Clin Oncol2017;35:9590

[143]

Kopetz S,Yaeger R.Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer.N Engl J Med2019;381:1632-43

[144]

Nazarian R,Wang Q.Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation.Nature2010;468:973-7 PMCID:PMC3143360

[145]

Villanueva J,Lee JT.Acquired resistance to BRAF Inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K.Cancer Cell2010;18:683-95 PMCID:PMC3026446

[146]

Prahallad A,Huang S.Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR.Nature2012;483:100-4

[147]

Ahronian LG,Van Allen EM.Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations.Cancer Discov2015;5:358-67 PMCID:PMC4390490

[148]

Shi H,Kong X.Melanoma whole-exome sequencing identifies V600E B-RAF amplification-mediated acquired B-RAF inhibitor resistance.Nat Commun2012;3:724 PMCID:PMC3530385

[149]

Saei A,Benoukraf T.Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies.J Exp Med2018;215:1913-28 PMCID:PMC6028519

[150]

Wang J,Jonsson P.A secondary mutation in BRAF confers resistance to RAF inhibition in a BRAFV600E-mutant brain tumor.Cancer Discov2018;8:1130-41 PMCID:PMC6125191

[151]

Shi H,Kong X.Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy.Cancer Discov2014;4:80-93 PMCID:PMC3936420

[152]

Rizos H,Pupo GM.BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact.Clin Cancer Res2014;20:1965-77

[153]

Straussman R,Shee K.Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.Nature2012;487:500-4 PMCID:PMC3711467

[154]

Sun C,Huang S.Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma.Nature2014;508:118-22

[155]

Lin L,Chan E.The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies.Nat Genet2015;47:250-6 PMCID:PMC4930244

[156]

Lu H,Zhang G.PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas.Nature2017;550:133-6 PMCID:PMC5891348

[157]

Lito P,Solit DB.Tumor adaptation and resistance to RAF inhibitors.Nat Med2013;19:1401-9

[158]

Röring M,Fiala GJ.Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling.EMBO J2012;31:2629-47 PMCID:PMC3365413

[159]

Diedrich B,Röring M.Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition.EMBO J2017;36:646-63 PMCID:PMC5331759

[160]

Cope N,Candelora C.Cover feature: biochemical characterization of full-length oncogenic BRAFV600E together with molecular dynamics simulations provide insight into the activation and inhibition mechanisms of RAF kinases (ChemBioChem 22/2019).ChemBioChem2019;20:2802.[DOI: 10.1002/cbic.201900645]

[161]

Héritier S,Chakraborty R.New somatic BRAF splicing mutation in Langerhans cell histiocytosis.Mol Cancer2017;16:115 PMCID:PMC5498996

[162]

Khater F,Cassart P.Recurrent somatic BRAF insertion (p.V504_R506dup): a tumor marker and a potential therapeutic target in pilocytic astrocytoma.Oncogene2019;38:2994-3002 PMCID:PMC6484687

[163]

Yuan J,Yap J.The AMPK inhibitor overcomes the paradoxical effect of RAF inhibitors through blocking phospho-Ser-621 in the C terminus of CRAF.J Biol Chem2018;293:14276-84 PMCID:PMC6139560

[164]

Yap J,Tee ZH,Ng WH.Characterize disease-related mutants of raf family kinases by using a set of practical and feasible methods.J Vis Exp2019;2019:e59795

[165]

Kornev AP,Ten Eyck LF.A helix scaffold for the assembly of active protein kinases.Proc Natl Acad Sci U S A2008;105:14377-82 PMCID:PMC2533684

[166]

Taylor SS.Protein kinases: evolution of dynamic regulatory proteins.Trends Biochem Sci2011;36:65-77 PMCID:PMC3084033

[167]

Waizenegger IC,Steurer S.A novel RAF kinase inhibitor with DFG-out-binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation.Mol Cancer Ther2016;15:354-65

[168]

Peng SB,Kaufman MD.Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers.Cancer Cell2015;28:384-98

[169]

Zhang C,Zhang Y.RAF inhibitors that evade paradoxical MAPK pathway activation.Nature2015;526:583-6

[170]

Basile KJ,Hartsough EJ.Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors.Pigment Cell Melanoma Res2014;27:479-84 PMCID:PMC3988223

[171]

Yao Z,Su W.RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling.Nat Med2019;25:284-91 PMCID:PMC6404779

[172]

Tang Z,Du R.BGB-283, a novel RAF kinase and EGFR inhibitor, displays potent antitumor activity in BRAF-mutated colorectal cancers.Mol Cancer Ther2015;14:2187-97

[173]

Okaniwa M,Arita T.Discovery of a selective kinase inhibitor (TAK-632) targeting pan-RAF inhibition: design, synthesis, and biological evaluation of C -7-substituted 1,3-benzothiazole derivatives.J Med Chem2013;56:6478-94

[174]

Whittaker SR,Wagner S,Root DE.Combined pan-RAF and MEK inhibition overcomes multiple resistance mechanisms to selective RAF inhibitors.Mol Cancer Ther2015;14:2700-11 PMCID:PMC4674359

[175]

Ozkan-Dagliyan I,George SD.Low-dose vertical inhibition of the RAF-MEK-ERK cascade causes apoptotic death of KRAS mutant cancers.Cell Rep2020;31:107764 PMCID:PMC7393480

[176]

Yen I,Lee J.ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma.Nature2021;594:418-23

[177]

Freeman AK,Morrison DK.Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling.Mol Cell2013;49:751-8 PMCID:PMC3582845

[178]

Beneker CM,Kontopidis G.Design and synthesis of type-IV inhibitors of BRAF kinase that block dimerization and overcome paradoxical MEK/ERK activation.J Med Chem2019;62:3886-97 PMCID:PMC6750704

[179]

Gunderwala AY,Cope NJ,Wang Z.Development of allosteric BRAF peptide inhibitors targeting the dimer interface of BRAF.ACS Chem Biol2019;14:1471-80 PMCID:PMC6733264

[180]

Lito P,Yue J.Disruption of CRAF-mediated MEK activation is required for effective mek inhibition in KRAS mutant tumors.Cancer Cell2014;25:697-710 PMCID:PMC4049532

[181]

Khan ZM,Marsiglia WM.Structural basis for the action of the drug trametinib at KSR-bound MEK.Nature2020;588:509-14 PMCID:PMC7746607

[182]

Ishii N,Joseph EW.Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of raf activity.Cancer Res2013;73:4050-60 PMCID:PMC4115369

[183]

Martinez-Garcia M,Albanell J.First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of RO5126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors.Clin Cancer Res2012;18:4806-19

[184]

Chenard-Poirier M,Boyd K.Results from the biomarker-driven basket trial of RO5126766 (CH5127566), a potent RAF/MEK inhibitor, in RAS- or RAF-mutated malignancies including multiple myeloma.J Clin Oncol2017;35:2506

[185]

Sriskandarajah P,Xu W.Update on clinical safety and efficacy of the novel oral dual RAF/MEK inhibitor RO5126766 (CH5127566) in RAS-mutant multiple myeloma.Blood2018;132:323

[186]

Thevakumaran N,Critton DA.Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation.Nat Struct Mol Biol2014;22:37-43

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/