ATP-binding cassette transporters at the zebrafish blood-brain barrier and the potential utility of the zebrafish as an in vivo model

Jordan M. Hotz , Joanna R. Thomas , Emily N. Katz , Robert W. Robey , Sachi Horibata , Michael M. Gottesman

Cancer Drug Resistance ›› 2021, Vol. 4 ›› Issue (3) : 620 -33.

PDF
Cancer Drug Resistance ›› 2021, Vol. 4 ›› Issue (3) :620 -33. DOI: 10.20517/cdr.2021.35
review-article

ATP-binding cassette transporters at the zebrafish blood-brain barrier and the potential utility of the zebrafish as an in vivo model

Author information +
History +
PDF

Abstract

The brain is protected from toxins by a tightly regulated network of specialized cells, including endothelial cells, pericytes, astrocyes, and neurons, known collectively as the blood-brain barrier (BBB). This selectively permeable barrier permits only the most crucial molecules essential for brain function to enter and employs a number of different mechanisms to prevent the entry of potentially harmful toxins and pathogens. In addition to a physical barrier comprised of endothelial cells that form tight junctions to restrict paracellular transport, there is an active protective mechanism made up of energy-dependent transporters that efflux compounds back into the bloodstream. Two of these ATP-binding cassette (ABC) transporters are highly expressed at the BBB: P-glycoprotein (P-gp, encoded by the ABCB1 gene) and ABCG2 (encoded by the ABCG2 gene). Although a number of in vitro and in vivo systems have been developed to examine the role that ABC transporters play in keeping compounds out of the brain, all have inherent advantages and disadvantages. Zebrafish (Danio rerio) have become a model of interest for studies of the BBB due to the similarities between the zebrafish and mammalian BBB systems. In this review, we discuss what is known about ABC transporters in zebrafish and what information is still needed before the zebrafish can be recommended as a model to elucidate the role of ABC transporters at the BBB.

Keywords

ABC transporters / blood-brain barrier / ABCG2 / P-glycoprotein / zebrafish

Cite this article

Download citation ▾
Jordan M. Hotz, Joanna R. Thomas, Emily N. Katz, Robert W. Robey, Sachi Horibata, Michael M. Gottesman. ATP-binding cassette transporters at the zebrafish blood-brain barrier and the potential utility of the zebrafish as an in vivo model. Cancer Drug Resistance, 2021, 4(3): 620-33 DOI:10.20517/cdr.2021.35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ehrlich P. Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytische Studie. Berlin: Hirschward; 1885.

[2]

Lewandowsky M.Zur Lehre der Zerebrospinalflussigkeit.Z Klin Med1900;40:480-4

[3]

Hawkins BT.The blood-brain barrier/neurovascular unit in health and disease.Pharmacol Rev2005;57:173-85

[4]

Blanchette M.Formation and maintenance of the BBB.Mech Dev2015;138 Pt 1:8-16

[5]

Muoio V,Sendeski MM.The neurovascular unit - concept review.Acta Physiol (Oxf)2014;210:790-8

[6]

Neuwelt EA.Mechanisms of disease: the blood-brain barrier.Neurosurgery2004;54:131-40; discussion 41

[7]

Zhao X,Liu M,Chen J.Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy.Acta Pharm Sin B2017;7:541-53 PMCID:PMC5595291

[8]

Greene C,Campbell M.Claudin-5: gatekeeper of neurological function.Fluids Barriers CNS2019;16:3 PMCID:PMC6350359

[9]

Ohtsuki S,Katsukura Y,Terasaki T.mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting.J Neurochem2008;104:147-54

[10]

Sohet F,Munji RN.LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation.J Cell Biol2015;208:703-11 PMCID:PMC4362448

[11]

Nitta T,Gotoh S.Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice.J Cell Biol2003;161:653-60 PMCID:PMC2172943

[12]

Saitou M,Sasaki H.Complex phenotype of mice lacking occludin, a component of tight junction strands.Mol Biol Cell2000;11:4131-42 PMCID:PMC15062

[13]

Inoko A,Tamura A,Furuse M.Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues.Genes Cells2003;8:837-45

[14]

Umeda K,Katahira-Tayama S.ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation.Cell2006;126:741-54

[15]

Tornavaca O,Dufton N.ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation.J Cell Biol2015;208:821-38 PMCID:PMC4362456

[16]

Reese TS.Fine structural localization of a blood-brain barrier to exogenous peroxidase.J Cell Biol1967;34:207-17 PMCID:PMC2107213

[17]

Chow BW.Gradual suppression of transcytosis governs functional blood-retinal barrier formation.Neuron2017;93:1325-33.e3 PMCID:PMC5480403

[18]

Daneman R.The blood-brain barrier.Cold Spring Harb Perspect Biol2015;7:a020412 PMCID:PMC4292164

[19]

Daneman R,Kebede AA.Pericytes are required for blood-brain barrier integrity during embryogenesis.Nature2010;468:562-6 PMCID:PMC3241506

[20]

Armulik A,Mäe M.Pericytes regulate the blood-brain barrier.Nature2010;468:557-61

[21]

Abbott NJ,Hansson E.Astrocyte-endothelial interactions at the blood-brain barrier.Nat Rev Neurosci2006;7:41-53

[22]

Janzer RC.Astrocytes induce blood-brain barrier properties in endothelial cells.Nature1987;325:253-7

[23]

Igarashi Y,Chiba H.Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier.Biochem Biophys Res Commun1999;261:108-12

[24]

Fu BM.Transport across the blood-brain barrier.Adv Exp Med Biol2018;1097:235-59

[25]

Robey RW,Hall MD,Bates SE.Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat Rev Cancer2018;18:452-64 PMCID:PMC6622180

[26]

Hartz AM.ABC transporters in the CNS - an inventory.Curr Pharm Biotechnol2011;12:656-73

[27]

Schinkel AH.Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview.Adv Drug Deliv Rev2003;55:3-29

[28]

Schinkel AH,van Tellingen O.Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs.Cell1994;77:491-502

[29]

Jonker JW,Wagenaar E.The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria.Proc Natl Acad Sci U S A2002;99:15649-54 PMCID:PMC137771

[30]

Mealey KL,Gay JM.Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene.Pharmacogenetics2001;11:727-33

[31]

Baudou E,Durrieu G.Serious ivermectin toxicity and human ABCB1 nonsense mutations.N Engl J Med2020;383:787-9

[32]

Pardridge WM.The blood-brain barrier: bottleneck in brain drug development.NeuroRx2005;2:3-14 PMCID:PMC539316

[33]

Canfield SG,Morales BS.An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.J Neurochem2017;140:874-88 PMCID:PMC5339046

[34]

Jackson S,Vezina A,Tanner K.Model systems for studying the blood-brain barrier: Applications and challenges.Biomaterials2019;214:119217

[35]

Poller B,Tang SC.Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier.Mol Pharm2011;8:571-82

[36]

Pastan I,Ueda K,Rutherford AV.A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprtein in MDCK cells.ProcNatlAcadSciUSA1988;85:4486-90 PMCID:PMC280455

[37]

Fung KL,Pixley JN.Using the BacMam baculovirus system to study expression and function of recombinant efflux drug transporters in polarized epithelial cell monolayers.Drug Metab Dispos2016;44:180-8 PMCID:PMC4727116

[38]

Elbakary B.A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation.Sci Rep2020;10:3788 PMCID:PMC7052153

[39]

Bhalerao A,Archie SR,Noorani B.In vitro modeling of the neurovascular unit: advances in the field.Fluids Barriers CNS2020;17:22 PMCID:PMC7077137

[40]

Helms HC,Burek M.In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use.J Cereb Blood Flow Metab2016;36:862-90 PMCID:PMC4853841

[41]

O'Brown NM,Gu C.Bridging barriers: a comparative look at the blood-brain barrier across organisms.Genes Dev2018;32:466-78 PMCID:PMC5959231

[42]

Li W,Wang Y,Beijnen JH.P-glycoprotein and breast cancer resistance protein restrict brigatinib brain accumulation and toxicity, and, alongside CYP3A, limit its oral availability.Pharmacol Res2018;137:47-55

[43]

Li Y,Miao X.Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier.Pharmacol Res2017;125:246-57

[44]

Umans RA.Zebrafish as a model to study drug transporters at the blood-brain barrier.Clin Pharmacol Ther2012;92:567-70 PMCID:PMC5706651

[45]

Susaki EA,Perrin D,Kuno A.Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging.Nat Protoc2015;10:1709-27

[46]

Wassie AT,Boyden ES.Expansion microscopy: principles and uses in biological research.Nat Methods2019;16:33-41 PMCID:PMC6373868

[47]

Umans RA,Mu F.CNS angiogenesis and barriergenesis occur simultaneously.Dev Biol2017;425:101-8 PMCID:PMC5682946

[48]

Jeong JY,Ahn JC.Functional and developmental analysis of the blood-brain barrier in zebrafish.Brain Res Bull2008;75:619-28

[49]

Fleming A,Goldsmith P.Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish.PLoS One2013;8:e77548 PMCID:PMC3797749

[50]

Quinonez-Silvero C,Herzog W.Development of the brain vasculature and the blood-brain barrier in zebrafish.Dev Biol2020;457:181-90

[51]

van Leeuwen LM,Jim KK.A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5.Biol Open2018;7:bio030494 PMCID:PMC5861362

[52]

Loh YH,Brenner S,Venkatesh B.Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes.Genome Res2004;14:1248-57 PMCID:PMC442139

[53]

Kiener TK,Hunziker W.Identification, tissue distribution and developmental expression of tjp1/zo-1, tjp2/zo-2 and tjp3/zo-3 in the zebrafish, Danio rerio.Gene Expr Patterns2007;7:767-76

[54]

O'Brown NM,Gu C.Suppression of transcytosis regulates zebrafish blood-brain barrier function.Elife2019;8:e47326 PMCID:PMC6726461

[55]

Ben-Zvi A,Kur E.Mfsd2a is critical for the formation and function of the blood-brain barrier.Nature2014;509:507-11 PMCID:PMC4134871

[56]

Guemez-Gamboa A,Yang H.Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome.Nat Genet2015;47:809-13 PMCID:PMC4547531

[57]

Wang Y,Moens CB.Notch3 establishes brain vascular integrity by regulating pericyte number.Development2014;141:307-17 PMCID:PMC3879812

[58]

Ando K,Izumi N.Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish.Development2016;143:1328-39 PMCID:PMC4852519

[59]

Korn J,Kurz H.Neuroectodermal origin of brain pericytes and vascular smooth muscle cells.J Comp Neurol2002;442:78-88

[60]

Chen J,Freeman MR.Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits.Nat Neurosci2020;23:1297-306 PMCID:PMC7530038

[61]

Jurisch-Yaksi N,Kizil C.Radial glia in the zebrafish brain: functional, structural, and physiological comparison with the mammalian glia.Glia2020;68:2451-70

[62]

Rowitch DH.Developmental genetics of vertebrate glial-cell specification.Nature2010;468:214-22

[63]

Grupp L,Mack AF.Astroglial structures in the zebrafish brain.J Comp Neurol2010;518:4277-87

[64]

Di Castro MA,Liaudet N.Local Ca2+ detection and modulation of synaptic release by astrocytes.Nat Neurosci2011;14:1276-84

[65]

Neve LD,Koke JR.Activating transcription factor 3 and reactive astrocytes following optic nerve injury in zebrafish.Comp Biochem Physiol C Toxicol Pharmacol2012;155:213-8

[66]

Fischer S,Burkhardt-Medicke K.Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos.BMC Biol2013;11:69 PMCID:PMC3765700

[67]

Georges E,Garipey J.Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies.Proc Natl Acad Sci USA1990;87:152-6 PMCID:PMC53218

[68]

Park D,Seng W. Zebrafish: a new in vivo model for identifying P-glycoprotein efflux modulators. In: McGrath P, editor. Zebrafish: Methods for Assessing Drug Safety and Toxicity. 2011. p. 177-90.

[69]

Bard SM.Assessing neuroprotective P-glycoprotein activity at the blood-brain barrier in killifish (Fundulus heteroclitus) using behavioural profiles.Mar Environ Res2007;64:679-82

[70]

Kennedy CJ,Mittelstadt M.Inhibition of P-glycoprotein in the blood-brain barrier alters avermectin neurotoxicity and swimming performance in rainbow trout.Aquat Toxicol2014;146:176-85

[71]

Luckenbach T,Sturm A.Current advances on ABC drug transporters in fish.Comp Biochem Physiol C Toxicol Pharmacol2014;165:28-52

[72]

Miller DS,Droulle L,Fricker G.Xenobiotic efflux pumps in isolated fish brain capillaries.Am J Physiol Regul Integr Comp Physiol2002;282:R191-8

[73]

Annilo T,Shulenin S.Evolution of the vertebrate ABC gene family: analysis of gene birth and death.Genomics2006;88:1-11

[74]

Kobayashi I,Moritomo T,Takizawa F.Characterization and localization of side population (SP) cells in zebrafish kidney hematopoietic tissue.Blood2008;111:1131-7

[75]

Long Y,Li J.Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish.Comp Biochem Physiol B Biochem Mol Biol2011;158:46-55

[76]

Lu X,Lin L,Zhong S.Characterization of zebrafish Abcc4 as an efflux transporter of organochlorine pesticides.PLoS One2014;9:e111664 PMCID:PMC4257548

[77]

Kim SS,Yang JY.Zebrafish as a screening model for testing the permeability of blood-brain barrier to small molecules.Zebrafish2017;14:322-30

[78]

Zoghbi SS,Yasuno F.11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux.J Nucl Med2008;49:649-56

[79]

Bieczynski F,Luquet CM,Luckenbach T.Chemical effects on dye efflux activity in live zebrafish embryos and on zebrafish Abcb4 ATPase activity.FEBS Lett2020;595:828-43

[80]

Lu X,Sun R,Lin L.Zebrafish Abcb4 is a potential efflux transporter of microcystin-LR.Comp Biochem Physiol C Toxicol Pharmacol2015;167:35-42

[81]

Lee TD,Brimacombe KR.A high-throughput screen of a library of therapeutics identifies cytotoxic substrates of P-glycoprotein.Mol Pharmacol2019;96:629-40 PMCID:PMC6790066

[82]

Robey RW,Ali-Rahmani F.Characterization and tissue localization of zebrafish homologs of the human ABCB1 multidrug transporter.bioRxiv2021;

[83]

Gao Y,Terai H.Overcoming resistance to the THZ series of covalent transcriptional CDK inhibitors.Cell Chem Biol2018;25:135-42.e5 PMCID:PMC6389506

[84]

Yamasaki Y,Okuya F.Characterization of P-glycoprotein humanized mice generated by chromosome engineering technology: its utility for prediction of drug distribution to the brain in humans.Drug Metab Dispos2018;46:1756-66

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/