Left-Invariant Minimal Unit Vector Fields on the Solvable Lie Group

Shaoxiang Zhang , Ju Tan

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (1) : 67 -80.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (1) : 67 -80. DOI: 10.1007/s11401-023-0005-1
Article

Left-Invariant Minimal Unit Vector Fields on the Solvable Lie Group

Author information +
History +
PDF

Abstract

Božek (1980) has introduced a class of solvable Lie groups Gn with arbitrary odd dimension to construct irreducible generalized symmetric Riemannian space such that the identity component of its full isometry group is solvable. In this article, the authors provide the set of all left-invariant minimal unit vector fields on the solvable Lie group Gn, and give the relationships between the minimal unit vector fields and the geodesic vector fields, the strongly normal unit vectors respectively.

Keywords

Solvable Lie groups / Lagrangian multiplier method / Minimal unit vector fields / Geodesic vector fields / Strongly normal unit vectors

Cite this article

Download citation ▾
Shaoxiang Zhang, Ju Tan. Left-Invariant Minimal Unit Vector Fields on the Solvable Lie Group. Chinese Annals of Mathematics, Series B, 2023, 44(1): 67-80 DOI:10.1007/s11401-023-0005-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghasi M, Nasehi M. Some geometrical properties of a five-dimensional solvable Lie group. Differ. Geom. Dyn. Syst., 2013, 15: 1-12

[2]

Aghasi M, Nasehi M. On the geometrical properties of solvable Lie groups. Adv. Geom., 2015, 15(4): 507-517

[3]

Aghasi M, Nasehi M. On homogeneous Randers spaces with Douglas or naturally reductive metrics. Differ. Geom. Dyn. Syst., 2015, 17: 1-12

[4]

Boeckx E, Vanhecke L. Harmonic and minimal radial vector fields. Acta Math. Hungar., 2001, 90(4): 317-331

[5]

Božek M. Existence of generalized symmetric Riemannian spaces with solvable isometry grooup. Časopis Pěst. Mat., 1980, 105: 368-384

[6]

Calvaruso G, Kowalski O, Marinosci R. Homogeneous geodesics in solvable Lie groups. Acta Math. Hungar., 2003, 101: 313-322

[7]

Gil-Medriano O, Llinares-Fuster E. Minimal unit vector fields. Tohoku Math. J., 2002, 54(2): 77-93

[8]

Gluck H, Ziller W. On the volume of a unit vector field on the three-sphere. Comment. Math. Helv., 1986, 61(2): 177-192

[9]

Gonzales-Davila J C, Vanhecke L. Examples of minimal unit vector fields. Ann. Global Anal. Geom., 2000, 18(3–4): 385-404

[10]

Johnson D L. Volumes of flows. Proc. Amer. Math. Soc., 1988, 104: 923-931

[11]

Johnson D L, Smith P. Regularity of volume-minimizing graphs. Indiana Univ. Math. J., 1995, 44: 45-85

[12]

Milnor J. Curvatures of left invariant metrics on Lie groups. Adv. Math., 1976, 21(3): 293-329

[13]

Pedersen S L. Volumes of vector fields on spheres. Trans. Amer. Math. Soc., 1993, 336: 69-78

[14]

Reznikov A G. Lower bounds on volumes of vector fields. Arch. Math., 1992, 58: 509-513

[15]

Salvai M. On the volume of unit vector fields on a compact semisimple Lie group. J. Lie Theory., 2003, 13(2): 457-464

[16]

Tsukada K, Vanhecke L. Invariant minimal unit vector fields on Lie groups. Period. Math. Hungar., 2000, 40(2): 123-133

[17]

Yi S. Left-invariant minimal unit vector fields on a Lie group of constant negative sectional curvature. Bull. Korean Math. Soc., 2009, 46(4): 713-720

[18]

Yi S. Left-invariant minimal unit vector fields on the semi-direct product ℝn × p ℝ. Bull. Korean Math. Soc., 2010, 47(5): 951-960

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/