Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory

Bin Ge , Beilei Zhang , Wenshuo Yuan

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (1) : 49 -66.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (1) : 49 -66. DOI: 10.1007/s11401-023-0004-2
Article

Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory

Author information +
History +
PDF

Abstract

The aim of this paper is the study of a double phase problems involving superlinear nonlinearities with a growth that need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools together with suitable truncation and minimax techniques with Morse theory, the authors prove the existence of one and three nontrivial weak solutions, respectively.

Keywords

Double phase problems / Musielak-Orlicz space / Variational method / Critical groups / Nonlinear regularity / Multiple solution

Cite this article

Download citation ▾
Bin Ge, Beilei Zhang, Wenshuo Yuan. Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory. Chinese Annals of Mathematics, Series B, 2023, 44(1): 49-66 DOI:10.1007/s11401-023-0004-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat., 1986, 50(4): 675-710

[2]

Zhikov V V. On Lavrentiev’s phenomenon. Russian J. Math. Phys., 1995, 3(2): 249-269

[3]

Zhikov V V. On some variational problems. Russian J. Math. Phys., 1997, 5(1): 105-116

[4]

Zhikov V V, Kozlov S M, Oleinik O A. Homogenization of Differential Operators and Integral Functionals, 1994, Berlin: Springer-Verlag

[5]

Baroni P, Colombo M, Mingione G. Harnack inequalities for double phase functionals. Nonlinear Anal., 2015, 121: 206-222

[6]

Colombo M, Mingione G. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal., 2015, 218(1): 219-273

[7]

Colombo M, Mingione G. Regularity for double phase variational problems. Arch. Ration. Mech. Anal., 2015, 215(2): 443-496

[8]

Baroni P, Colombo M, Mingione G. Regularity for general functionals with double phase. Calc. Var. & PDE., 2018, 57(2): 62

[9]

Ok J. Partial regularity for general systems of double phase type with continuous coefficients. Nonlinear Anal., 2018, 177(B): 673-698

[10]

Ok J. Regularity for double phase problems under additional integrability assumptions. Nonlinear Anal., 2020, 194: 111408

[11]

Riey G. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete Contin. Dyn. Syst., 2019, 39(8): 4863-4873

[12]

De Filippis C, Mingione G. Manifold constrained non-uniformly elliptic problems. J. Geom. Anal., 2020, 30(2): 1661-1723

[13]

Perera K, Squassina M. Existence results for double-phase problems via Morse theory. Commun. Contemp. Math., 2018, 20(2): 1750023

[14]

Liu W L, Dai G W. Existence and multiplicity results for double phase problem. J. Differ. Eqn., 2018, 265(9): 4311-4334

[15]

Liu W L, Dai G W. Three ground state solutions for double phase problem. J. Math. Phys., 2018, 59(12): 121503

[16]

Hou G L, Ge B, Zhang B L, Wang L Y. Ground state sign-changing solutions for a class of double phase problem in bounded domains. Bound. Value. Probl., 2020, 24: 1-21

[17]

Colasuonno F, Squassina M. Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl., 2016, 195(6): 1917-1959

[18]

Ge B, Lv D J, Lu J F. Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions. Nonlinear Anal., 2019, 188: 294-315

[19]

Ge B, Chen Z Y. Existence of infinitely many solutions for double phase problem with sign-changing potential. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 2019, 113(4): 3185-3196

[20]

Ge B, Wang L Y, Lu J F. On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions. Appl. Anal., 2021, 100(10): 2147-2162

[21]

Papageorgiou N S, Radulescu V D, Repovs D D. Double-phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys., 2018, 69(4): 108

[22]

Papageorgiou N S, Radulescu V D, Repovs D D. Double-phase problems and a discontinuity property of the spectrum. Proc. Amer. Math. Soc., 2019, 147(7): 2899-2910

[23]

Radulescu V D. Isotropic and anistropic double-phase problems: old and new. Opuscula Math., 2019, 39(2): 259-279

[24]

Cencelj M, Radulescu V D, Repovs D D. Double phase problems with variable growth. Nonlinear Anal., 2018, 177(A): 270-287

[25]

Gasinski L, Winkert P. Constant sign solutions for double phase problems with superlinear nonlinearity. Nonlinear Anal., 2020, 195: 111739

[26]

Gasinski L, Winkert P. Existence and uniqueness results for double phase problems with convection term. J. Differ. Equa., 2020, 268(8): 4183-4193

[27]

Zeng S D, Gasinski L, Winkert P, Bai Y R. Existence of solutions for double phase obstacle problems with multivalued convection term. J. Math. Anal. Appl., 2020, 501(1): 123997

[28]

Mao A M, Zhang Z T. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal., 2009, 70(3): 1275-1287

[29]

Musielak J. Orlicz Spaces and Modular Spaces, 1983, Berlin: Springer-Verlag

[30]

Benkirane A, Sidi El Vally M. Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin, 2014, 21(5): 787-811

[31]

Fan X L, Guan C X. Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications. Nonlinear Anal., 2010, 73(1): 163-175

[32]

Harjulehto P, Hästö P, Klén R. Generalized Orlicz spaces and related PDE. Nonlinear Anal., 2006, 143: 155-173

[33]

Chang K C. Critical Point Theory and Applications, 1996, Shanghai: Shanghai Scientific and Technology Press

[34]

Chang K C. Infinite-Dimensional Morse Theory and Multiple Solution Problems, 1993, Boston: Birkhauser Boston Inc.

[35]

Bartsch T, Li S J. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal., 1997, 28(3): 419-441

[36]

Cerami G. Un criterio di esistenza per i punti critici su varieta ilimitate. Rc. Ist. Lomb. Sci. Lett., 1978, 112: 332-336

[37]

Dugundji J. Topology, 1966, Boston: Allyn and Bacon Inc

[38]

Motreanu D, Motreanu V V, Papageorgiou N S. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 2014, New York: Springer-Verlag

[39]

Gasinski L, Papageorgiou N S. Exercises in Analysis Part 2. Nonlinear Analysis, 2016, Cham: Springer-Verlag

[40]

Fukagai N, Narukawa K. On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura. Appl., 2007, 186(3): 539-564

[41]

Corvellec J N, Hantoute A. Homotopical stability of isolated critical points of continuous functionals. Set Valued Anal., 2002, 10(2–3): 143-164

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/