Digital Cofibration and Digital Lusternik-Schnirelmann Category in the Sense of Subdivision

Hongjie Zhang , Linan Zhong , Hao Zhao

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (1) : 35 -48.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (1) : 35 -48. DOI: 10.1007/s11401-023-0003-3
Article

Digital Cofibration and Digital Lusternik-Schnirelmann Category in the Sense of Subdivision

Author information +
History +
PDF

Abstract

In this paper, using the notion of subdivision, the authors generalize the definition of cofibration in digital topology and show that this kind of cofibration is injective in the sense of subdivision. Meanwhile, they give the necessary condition under which a digital map is a cofibration. Furthermore, they consider the Lusternik-Schnirelmann category of digital maps in the sense of subdivision and give several fundamental homotopy properties about it.

Keywords

Digital topology / Digital cofibration / Lusternik-Schnirelmann category

Cite this article

Download citation ▾
Hongjie Zhang, Linan Zhong, Hao Zhao. Digital Cofibration and Digital Lusternik-Schnirelmann Category in the Sense of Subdivision. Chinese Annals of Mathematics, Series B, 2023, 44(1): 35-48 DOI:10.1007/s11401-023-0003-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borat A, Vergili T. Digital Lusternik-Schnirelmann category. Turkish Jour. Math., 2018, 42: 1845-1852

[2]

Borat A, Vergili T. Digital Lusternik-Schnirelmann category of digital functions. Hacettepe Jour. Math. and Stat., 2020, 49: 1414-1422

[3]

Boxer L. A classical construction for the digital fundamental group. Math. Imaging Vision, 1999, 10: 51-62

[4]

Ege O, Karaca I. Digital fibrations. Proc. Nat. Acad. Sci. India Sect. A, 2017, 87: 109-114

[5]

Kong T Y, Roscoe A W, Rosenfeld A. Concepts of digital topology. Topology Appl., 1992, 46: 219-262

[6]

Lupton G, Oprea J, Scoville N. A fundamental group for digital images. Jour. Appl. Comput. Topology, 2021, 5: 249-311

[7]

Lupton G, Oprea J, Scoville N. Homotopy theory in digital topology. Disc. Comput. Geometry, 2022, 67: 112-165

[8]

Lupton G, Oprea J, Scoville N. Subdivision of maps of digital images. Disc. Comput. Geometry, 2022, 67: 698-742

[9]

Spanier E. Algebraic Topology, 1966, New York: McGraw-Hill

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/