An efficient fluorescent probe 1 based on tricarbocyanine derivative was designed and synthesized, which can detect Ag+ in real industrial wastewater. UV-Vis absorption and fluorescent emission spectra of probe 1 were carried out and indicated this probe can bind Ag+ via complexation reaction, then leading to a remarkable color change from blue to light red. Furthermore, probe 1 showed high sensitive performance and excellent selectivity toward Ag+ over other common metal ions in neutral pH. The sensing mechanism was proposed and further confirmed by 1H NMR, which demonstrate analyte-induced destruction of the π-electron system could be shorten by the disruption of the pull-push π-conjugation system in probe 1. Moreover, a test strip was prepared by filter paper immersing in probe 1 solution, which further provide its potential application for trace Ag+ detection in real industrial wastewater.
The application and mechanism study of microwave irradiation in traditional industries have attracted considerable attention owing to the unique thermal and athermal effects that could lead to unexpected benefits in high-efficiency and clean production. Herein, we report the investigation of the aluminum tanning under microwave irradiation upon using hide powder and skin pieces, respectively, as simulants of real hide or skin. The aluminum tanning process and the tanned products under microwave heating (MWH) were studied and compared with those of conventional water bath heating (WBH) as the controls. For the tanning system of hide powder, the tanning effluents were analyzed in terms of pH, conductivity, dielectric constant and aluminum content, and the tanned powder was investigated by differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, and FT-IR spectroscopy. For the skin piece system, the pH and aluminum content of tanning effluents were also determined, and at the same time, DSC, TG, SEM, FT-IR and shrinkage temperature were used to illustrate the actions of microwaves on the structure and properties of the tanned pieces. The results show that aluminum reactivity in the penetration and binding process of collagen fibers in hide powder and skin pieces improved using microwave treatment. The residual aluminum content was greatly reduced by microwave heating action, and the increased amount of aluminum with evener distribution was observed in the tanned products. Microwave irradiation also resulted in the tanned products with better thermal stability and thermal decomposition resistance. This work further promotes application of microwave treatments for aluminum-based tanning in leather industry.
Collagen, as a thermal-sensitive protein, is the most abundant structural protein in animals. Native collagen has been widely applied in various fields due to its specific physicochemical and biological properties. The beneficial properties would disappear with the collapse of the unique triple helical structure during heating. Understanding thermal stability of collagen is of great significance for practical applications. Previous studies have shown the thermal stability would be affected by the different sources, extraction methods, solvent systems in vitro and modified methods. Accordingly, the factors affecting thermal stability of collagen are discussed in detail in this review.
The production of leather from animal skins and hides through tanning processes began in the pre-historic ages. Despite the origination of new leather making techniques such as chrome tanning which is being employed extensively today, the traditional method of leather production primarily through vegetable tanning is still being practised mostly in artisanal tanneries in developing nations including Ghana. Artisanal leather making, thus, contributes beneficially to rural livelihood. Nevertheless, the growth of this sector has been stifled by the lack of innovative technologies to enhance productivity. This challenge could be partly linked to the knowledge gap on the scientific principles governing artisanal leather production processes. This study, therefore, elaborates on various process steps and materials employed in traditional leather making in Ghana and the scientific principles underlying each of the processes. It also makes a comparison between traditional and modern leather manufacturing processes and identifies knowledge and technological gaps which would inspire in-depth scientific research into artisanal leather making.
In preparing the second edition of ‘Tanning Chemistry. The Science of Leather.’, the literature was updated and the content was revised and reviewed. Here, the new findings are presented and discussed.
Notable developments include the necessary rethinking of the mechanism of sulfide unhairing because of new understanding of the aqueous chemistry of sulfide species. Revision upwards of the value of the second pKa for sulfide species ionisation means that S2− cannot exist in an aqueous medium, so the unhairing species in hair burn reactions is HS−. Although the technology remains the same, this means the mechanisms of associated reactions such as immunisation must be revised.
Rawstock preservation has benefitted from studies of the potential role of materials from plants which accumulate salt, but which also contribute terpene compounds. There is also further discussion on the continuing issue of chromium (VI) in the leather industry.
The application to processing of new solvents, ionic liquids and deep eutectics, is the coming technology, which offers transforming options for new chemistries and products. Renewed interest in vegetable tanning and methods of wet white processing are current trends. Also, within the topic of reagent delivery is processing in a solid medium of plastic beads.
Collagen fiber (CF) and silane coupling agent-modified collagen fiber (MCF) were used as flame retardant filler for natural rubber (NR) modification. The combustion phenomena and properties of composites blended with different dosages of CF or MCF were compared to elucidate the flame retardant mechanism of the composites. The flame retardancy of NR can be enhanced effectively by increasing nitrogen content (the nitrogen content of CF is about 18%), creating air pockets, and structuring the flame retardant network in the composites. MCF failed to structure a flame retardant network in the composite, indicating that its modification effects of MCF are weaker than those of CF. When CF dosage was 30 wt%, the composite can achieve the best flame retardancy, with limited oxygen index of 29.4% and without smoke and dripping during burning. This study demonstrated a new method for the flame retardant modification of NR.
Leather industry is facing new trends on production and consumption patterns due to society concerns. Circular economy is proposing a transition from the current economic model to a more sustainable one, in which waste is designed out and resources will be reused and recycled as long as possible. In this transition, Life Cycle Assessment (LCA) is an important tool to help decision-making. In the present review, 39 English-written peer-reviewed papers related to LCA and leather have been found, 30 of which were published in the last 6 years, meaning LCA is nowadays an important subject. Papers are presented within 4 types, focused on: 1) the whole leather production process, 2) a single step in the production process (e.g, new technologies for unhairing), 3) waste treatment and recycling, and 4) life cycle thinking with ideas on long-term strategies for leather industries. As discussed in the literature review, leather industry has important challenges to address: increasing sustainability and transparency on the supply chain, and strengthening the beauty of leather. Taking up these challenges from a life cycle perspective will help leather industry flourish in the coming future.
Chromium is widely used in industry, and improper disposal of wastewater and industrial residues containing excessive chromium can contaminate water and soil, endangering both environmental and human health. Natural biopolymers and their derivatives have been investigated for removal of chromium (Cr) from wastewater. Cellulose, lignin, tannin, chitin, chitosan, and polypeptides are abundant in nature, and have high potential as adsorbents due to their easy access, low cost, and the recyclability of the captured heavy metals. In order to improve their mechanical strength, recyclability, specific surface area, binding site number, and adsorption rate as adsorbents, native materials have also been modified. This review discusses the source of chromium contamination and the main species of interest, as well as their toxicity. The structures of the aforementioned biopolymers were analyzed, and the adsorption mechanism of chromium and the main influencing factors on this process are discussed. The modification methods of various adsorbents and their adsorption effects on chromium are also detailed, and the developmental direction of research on the use of biopolymer adsorption remediation to control chromium contamination is discussed.
Cr(VI) containing industrial wastewaters are highly toxic and carcinogenic, and severely threats living creatures and the environment. Therefore, it is highly desired yet challenging to develop an available and economical adsorbent for simultaneously detoxifying Cr(VI) anions to Cr(III) ions and removing them from the wastewater. Here we propose a facile method for rapid removal of Cr(VI) ions from the wastewater by using a synthetic polydopamine microsphere (PPM) adsorbent with hierarchical porosity. The as-prepared PPM exhibits high Cr(VI) removal capacity of 307.7 mg/g and an outstanding removal efficiency. They can effectively decrease the Cr(VI) concentration to lower than 0.05 mg/L well below the limits for drinking water standard of WHO regulations in 60 s at pH 2. More importantly, PPMs can reduce the lethal Cr(VI) anions to Cr(III) ions with low toxicity, and simultaneously immobilize them on the matrices of PPMs.
The manufacture of leather covers a wide productive chain and beyond contributes to the economic flow. The various stages of leather processing result in high volumes of solid waste. In Brazil, a daily generation of 375 tons of solid waste is estimated, and landfills are still the most used route to its destination. In this review, emphasis will be given to researches that have sought alternatives for the use of solid waste from the tannery industry. Among the main applications of solid tannery wastes, the following stand out production of adsorbent materials, biodiesel, biogas, biopolymers, applications in agriculture and other applications involving extraction/recovery of compounds of industrial/commercial interest, isolation of microorganisms and production of enzymes and applications in the animal diet. In each alternative of waste application, the technologies used, the opportunities, and the challenges faced are mentioned. We hope that this review can provide valuable information to promote the broad understanding of the possibilities that tannery solid wastes has for the development of biodegradable and agricultural products, wastewater treatment, extraction of compounds of industrial and commercial interest, among others.
Since microwave irradiation could promote hydrolysis and olation of chromium tanning liquor, but the influence of microwave on chromium complex component in the liquor was still unknown. Chromium sulphate solution (0% basicity) and 33% basicity chromium tanning liquor were subjected microwave (MW) and water bath (WB) heating, and the samples without any warming were regarded as control. Ion exchange chromatography (IEC) and gel filtration chromatography (GFC) were used to measure the charge composition and molecular size of chromium complexes in each sample. FT-IR was used to characterize the structure of chromium complexes in each composition separated by IEC. Moreover, the chromium tanning liquor after warming was used in hide powder tanning trials to illustrate whether microwave would affect its tanning ability. The results show there are more high positive charge and large molecular size complexes in chromium tanning liquor after warming but the phenomena are more significant in MW samples compared with WB due to non-thermal effect of microwave. In addition, microwave has more powerful effect on 33% basicity chromium tanning liquor hydrolysis and olation to generate larger molecular size complexes. In FT-IR results, the combination pattern between chromium and ligands are changed after warming but there is no difference between WB and MW. The chromium exhaustion and thermal stability of hide powder tanned with chromium tanning liquor after microwave irradiation are both higher. It could conclude that both thermal and non-thermal effects of microwave promote the process together, and the non-thermal effect leads to more high positive charge and large molecular size complexes and has stronger influence on high polarity system. In short, this work would provide theoretical basis for applying microwave in tanning agent modification and chrome tanning process further.
As other causes decline in importance, chromium-tanned leather has become a more important source for chromium allergy, which affects around 1% of the general population. The aim of this review is to give suggestions on how to minimize the risk of leather-related allergic contact dermatitis, which can be elicited in chromium-allergic persons by hexavalent and trivalent chromium released from leather. Hexavalent chromium is the more potent chromium form and requires a lower skin dose to elicit allergic reactions. It is formed on the surface of some, antioxidant-free, leathers at dry conditions (< 35% relative humidity) and is influenced by the tanning process and other conditions, such as UV irradiation, contact with alkaline solutions, and leather age. Trivalent chromium is the dominant form released from chromium-tanned leather and its released amount is sufficient to elicit allergic reactions in some chromium-allergic individuals when they are exposed repetitively and over longer time (days – months). A low initial test result (< 3 mg/kg) for hexavalent chromium with the current standard test (ISO 17075) does not guarantee a low release of chromium from the leather or a low release of hexavalent chromium under typical exposure conditions during the service life of the leather. Information, labels, and certificates regarding leather products are often insufficient to protect chromium-allergic individuals. Correct labelling and information on the possible content of different allergens, as well as different tanning alternatives for certain leather products, are crucial.
Chromium shavings are wet by-products of the leather industry, of which thousands of tons accrue worldwide during leather manufacture. Due to their chromium content, chromium shavings are responsible for the most important ecological challenges caused by the leather industry. They are stable towards temperatures of up to 110 °C and enzymatic degradation. This high stability is caused by the three-dimensional native structure, typical for collagen, and additional chemical cross-links between the collagen fibres achieved by Cr3+ salts in the tanning process. Therefore, hitherto chromium shavings are not utilized industrially to produce biogas. In order to generate biogas, this stable structure has to be denatured. Chromium shavings were pre-treated by extrusion and hydrothermal methods. To prove the enzymatic degradability, the different pre-treatments were evaluated by differential scanning calorimetry (DSC), enzymatic assays, and by measuring the solubility in water. The biogas production potential was investigated using batch trials to examine feasibility. Results demonstrated that both pre-treatments allowed enzymatic attack and increased degradability of the chromium shavings reducing the lag-phase of biogas production and the remaining waste.
Metallomacromolecules are frequently encountered in redox proteins including metal-tanned hide collagen and play crucial roles involving supramolecular properties in biological electron-transfer processes. They are also currently found in non-natural families, such as: metallopolymers, metallodendrimers and metallodendronic polymers. This mini-review discusses the supramolecular redox functions of such nanomaterials developed in our research group. Electron-transfer processes are first examined in mono-, bis- and hexa-nuclear ferrocenes and other electron-reservoir organoiron systems showing the influence of supramolecular and reorganization aspects on their mechanism. Then applications of electron-transfer processes using these same organoiron redox systems in metallomacromolecules and their supramolecular functions are discussed including redox recognition/sensing, catalysis templates, electrocatalysis, redox catalysis, molecular machines, electrochromes, drug delivery device and nanobatteries.
A series of amphiphilic hyperbranched polymers (AHP-s, the “s” refers to the algebra of AHP) were synthesized by the reaction between hydroxyl-terminated hyperbranched polymers (HBP-s, the “s” refers to the algebra of HBP) and palmitoyl chloride. FTIR, NMR and GPC were used to determine the structure of AHP-s, the results showed that AHP-s exhibits core-shell structure. The thermal properties of polymers were investigated by DSC and TGA. It was found that AHP-2, AHP-3 and AHP-4 display higher thermal stability than AHP-1 (AHP-1, AHP-2, AHP-3 and AHP-4 represent the first, second, third and fourth generation AHP, respectively). Furthermore, the self-assembly performance of AHP-s in THF solvent was investigated by TEM and SEM. Finally, the encapsulation capacity of the AHP-s for methyl orange (MO) was explored at different concentrations of AHP-s and pH conditions. It was found that AHP-s is capable of accommodating hydrophilic guest MO. Moreover, the higher generation of AHP-s, the stronger encapsulation capacity obtained. And the encapsulation capacity closely associated with the pH of encapsulation system.
The glycoconjugates, herein glyco-proteins, existing in animal skins are closely related to the effectiveness of unhairing and fiber opening-up. Glycosidases have been used in leather making processes to reduce pollutants and improve leather quality. But the selection of glycosidases is still blind because the related mechanisms are not well understood yet. Hence, the animal skin structures and glycoconjugates components, the advances in the methods and mechanisms of removing glycoconjugates related to unhairing and fiber opening-up in leather manufacture, the kinds, compositions, structures and functions of typical glycoconjugates in skin are summarized. Then the approaches to destroy them, possible glycosidases suitable for leather making and their acting sites are analyzed based on the recognition of glycoconjugates in skin and the specificities of glycosidases toward substrates. It is expected to provide useful information for the optimization of glycosidases and the development of new enzymes and the cleaner technologies of unhairing and opening up fiber bundles assisted by glycosidases.
Enzymatic unhairing is a cleaner strategy for leather-making. It is a potential alternative to the traditional hair-burning process. However, several shortcomings, such as uncontrolled enzymatic reaction, and risk of grain looseness and damage have restricted the broad application of enzymatic unhairing. In this work, metal ions and organic additives were screened for lessening the hydrolytic activity of proteinase K to collagen fiber. Then, the selected additives were applied to the enzymatic unhairing process for bovine hide. The results showed that a suitable concentration of metal ions (Cu (II), Fe (III) and Al (III)) and organic additives (salicylate, laurate, adipate, gallate and epicatechin (ECG)) could diminish approximately 35% of the hydrolytic activity of proteinase K to collagen fibers. Then, the additives were applied for the bovine hide enzymatic unhairing process. Hydroxyproline determination in the unhairing float shows that applying additives could reduce collagen hydrolysis. The morphology results showed that the grain damage could be significantly reduced with the addition of the screened additives in the proteinase K enzymatic unhairing system, whereas the addition of ECG and gallate significantly slowed down the unhairing speed. This outcome provides new potential to reduce the risk of grain damage in enzymatic unhairing process.
Wool fiber contains approximately 95% keratinous proteins, which is one of the most abundant sources of structural protein. However, a large amount of wool waste is underutilized. Developing appropriate approaches to recycle wool waste and produce value-added products is vital for sustainable development and reducing environmental burden. Thus, this paper reviews the mechanical methods of fabricating wool powder, including pan milling, combined wet and air-jet milling, steam explosion, freeze milling, and three-stage milling. The influencing factors of shape and size, structure, and properties are highlighted to overview of the possible controlling methods. Then, this review summarizes various chemical methods for the extraction of wool keratin, underlining the dissolution efficiency and the structure of wool keratin. Furthermore, the application of reused wool particles in textile, biosorbent, and biomaterials are also reported. Finally, several perspectives in terms of future research on the fabrication and application of wool particles are highlighted.
The environmental repercussions of wastewater from the dye process mean that it is very important to obtain an eco-friendly photocatalyst that would degrade wastewater. Herein, bismuth tungstate/graphene oxide (Bi2WO6/GO) composites are fabricated through in-situ hydrothermal reaction and then the Bi2WO6/GO photocatalysts are deposited onto polyethylene terephthalate (PET) fabric. The obtained Bi2WO6/GO deposited PET fabrics are then characterized through XPS, Raman, SEM, TEM, XRD, UV-vis, BET method and photoluminescence spectroscopy (PL) to investigate their chemical and crystal structures, morphology, optical property, surface area and photochemical properties. Photocatalytic performance is studied through examining the rate of degrading rhodamine B (RhB) under visible light. Surface of PET fibers is densely covered with Bi2WO6/GO. Bi2WO6/GO deposited PET fabrics show a broad absorption band in the visible spectra. Removal rate of RhB on the Bi2WO6/GO deposited PET fabric is the highest with the GO content of 2 g/L (labeled as Bi2WO6/2 g/LGO). The result of active species experiment shows that superoxide radicals (·O2 −) plays a major role in the degradation of RhB. Moreover, Bi2WO6/2 g/LGO deposited PET fabric shows excellent cycle stability of photocatalytic degradation for RhB. The findings in this work can be extended to preparation other types of composite on the textile for photocatalysis, which can be applied to remove dyes in the wastewater produced by the textile or leather industry.
A promising and practical chrome-free tanning system has been developed based on a novel Al–Zr bimetal complex tanning agent. However, to achieve satisfactory resultant leather, the retanning process that is compatible with this emerging tannage needs to be investigated systematically. This paper aims to explore the interaction between the bimetal complex tanned wet white and retanning agents. The isoelectric point (pI) of wet white was 7.2, which was nearly the same as wet blue. The electropositivity of wet white was even higher than that of wet blue during post-tanning processes, resulting in higher uptake rate of retanning agents. The distribution of various retanning agents in wet white was analyzed by pI measurement of layered leather and fluorescent tracing technique. The retanning agents were unevenly distributed throughout the cross-section, which might be an important restriction factor in obtaining satisfactory organoleptic properties of the crust leather. This fact is mainly due to the strong electrostatic interaction between anionic retanning agents and wet white. Applying a high dosage of multiple retanning agents in a proper sequence of addition benefited the full penetration of retanning agents in leather matrix and thus improved the organoleptic properties of crust leather. This work provides guidance for optimizing retanning process of the wet white leather.
The templated synthesis of noble metal nanoparticles using biomass, such as proteins and polysaccharides, has generated great interest in recent years. In this work, we report on denatured proteins as a novel template for the preparation of water-soluble metal nanoparticles with excellent stability even after high speed centrifugation or storage at room temperature for one year. Different noble metal nanoparticles including spherical gold and platinum nanoparticles as well as gold nanoflowers are obtained using sodium borohydride or ascorbic acid as the reducing agent. The particle size can be controlled by the concentration of the template. These metal nanoparticles are further used as catalysts for the hydrogenation reaction of p-nitrophenol to p-aminophenol. Especially, spherical gold nanoparticles with an average size of 2 nm show remarkable catalytic performance with a rate constant of 1.026 × 10− 2 L s− 1 mg− 1. These metal nanoparticles with tunable size and shape have great potential for various applications such as catalysis, energy, sensing, and biomedicine.
Genuine leather is often coated before making daily necessities such as shoes, clothing, bags, sofas, car seats, etc., so as to impart leather products various colours, higher wear resistance and water resistance and so on. However, the coating of these products is often damaged in daily use which will decrease its aesthetic effect and practicability. Therefore, how to improve the scratch resistance of leather coatings has been puzzling people all the time. It is a common knowledge that animals and plants can repair the injured biological tissues by himself. According to this principle, here, we prepared a type of self-healing water-borne polyurethane with disulfide bond in the main chain by using HEDS as chain extender, and the self-healing system was triggered by the disulfide bonds with the help of shape memory function of waterborne Polyurethane, self-healing experiments how that the damaged of leather coating can be repaired fully at 60 °C for 12 h.
Fast walking and jogging are two common exercises for people to maintain health in daily life. But the differences in loading patterns of fast walking and jogging are still unclear. The purpose of this study was to compare loading patterns in fast walking and jogging at the same speed, and to identify how differences in foot mechanics influence plantar pressure distribution between the two modes of gait. Totally, 49 healthy males participated in this study. Data of pressure parameters, including maximum force (MF), peak pressure (PP), contact area (CA), force-time integral (FTI), were recorded by Pedar-X insole plantar pressure measurement system in participants’ fast walking and jogging process at 7 km/h. A Load transfer analysis method was used to quantify the plantar load transference from fast walking to jogging. The results showed that MF, PP and CA increased in metatarsal regions and midfoot regions while decreased in toes regions and heel during jogging when compared with fast walking. FTI decreased in all foot regions during jogging compared to fast walking. Under the effects of spring mechanics and the varus of rearfoot during jogging, fast walking and jogging reveal different loading patterns. Compared jogging to fast walking, load transferred as follow: 1) in transverse direction, load transferred from lateral foot to medial foot in metatarsal regions and midfoot regions, 2) in longitudinal direction, load transferred from toes to the metatarsal, and from heel to the metatarsal and midfoot. These results also provide suggestions for footwear designs.
As an imitation of genuine leather, polyvinyl chloride (PVC) artificial materials are versatile, but suffers from being flammable due to the presence of large amounts of combustible plasticizers. Under such circumstance, intrinsically flame-retardant plasticizers displaying dual functions have been a subject of intensive research interest. However, previous strategies attempting to covalently attach flame-retardant moiety to plasticizers invariably required either expensive starting materials or laborious and tedious procedures, ultimately limiting their scale-up application in industry. In addition, driven by escalating demand of halogen-free flame retardants worldwide from an environmental health perspective, previously reported intrinsically flame-retardant plasticizers were mainly halogen-free, less attractive in PVC artificial material industry simply because PVC itself is a halogen-containing polymer. Here, we report an approach to introduce chlorine moieties into unsaturated fatty acid methyl ester by a simple addition reaction occurring on carbon-carbon double bonds, yielding a chlorine-containing, intrinsically flame-retardant bio-plasticizer. When combined with di-(2-ethylhexyl) phthalate (DOP) in PVC formulations, the chlorinated fatty acid methyl ester is qualified as a co-plasticizer while conferring flame retardancy upon the PVC coatings. This approach involves only a one-step procedure that employs renewable fatty acid methyl esters and cheap chlorine gas as raw materials, thus being of great potential to enable intrinsically flame-retardant bio-plasticizers on a large scale to manufacture functional PVC artificial materials for application in fire-prone scenarios.
It has been a research goal to develop macroscopic materials with an optimized surface structure to affix silver nanoparticles which could contaminate water and maximize their practical functions. Cellulose paper is a versatile biomass material valued for its abundance, low cost, biocompatibility, and natural composition. Until now, its potential application in water purification has not been adequately explored. In this study, gallic acid-modified silver nanoparticles (GA@AgNPs) were loaded onto commercial cellulose filter paper using a simple lipoic acid modification process (GA@AgNPs-LA-CP). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the GA@AgNPs-LA-CP. The catalytic activity of the GA@AgNPs-LA-CP was evaluated by the reduction reaction of methylene blue (MB), Rhodamine B (RhB), and 4-nitrophenol (4-NP) with sodium borohydride (NaBH4). The GA@AgNPs-LA-CP exhibited excellent catalytic activity toward MB, RhB, and 4-NP, taking advantage of its high specific surface area generated by the cellulose fiber network structure. Interestingly, due to the electrostatic interactions between the cationic dyes and the GA@AgNPs, the as-prepared catalytic composite material serves as a better catalyst for MB and RhB, suggesting dual applications of the composite materials for organic wastewater treatment and the removal of harmful dyes. This implies that the immobilization of AgNPs on cellulose papers is an effective method and can be applied to efficient wastewater treatment applications.
There is a substantial loss of value in bovine leather every year due to a leather quality defect known as “looseness”. Data show that 7% of domestic hide production is affected to some degree, with a loss of $35 m in export returns. This investigation is devoted to gaining a better understanding of tight and loose wet blue leather based on vibrational spectroscopy observations of its structural variations caused by physical and chemical changes that also affect the tensile and tear strength. Several regions from the wet blue leather were selected for analysis. Samples of wet blue bovine leather were collected and studied in the sliced form using Raman spectroscopy (using 532 nm excitation laser) and Attenuated Total Reflectance - Fourier Transform InfraRed (ATR-FTIR) spectroscopy. The purpose of this study was to use ATR-FTIR and Raman spectra to classify distal axilla (DA) and official sampling position (OSP) leather samples and then employ univariate or multivariate analysis or both. For univariate analysis, the 1448 cm− 1 (CH2 deformation) band and the 1669 cm− 1 (Amide I) band were used for evaluating the lipid-to-protein ratio from OSP and DA Raman and IR spectra as indicators of leather quality. Curve-fitting by the sums-of-Gaussians method was used to calculate the peak area ratios of 1448 and 1669 cm− 1 band. The ratio values obtained for DA and OSP are 0.57 ± 0.099, 0.73 ± 0.063 for Raman and 0.40 ± 0.06 and 0.50 ± 0.09 for ATR-FTIR. The results provide significant insight into how these regions can be classified. Further, to identify the spectral changes in the secondary structures of collagen, the Amide I region (1600–1700 cm− 1) was investigated and curve-fitted-area ratios were calculated. The 1648:1681 cm− 1 (non-reducing: reducing collagen types) band area ratios were used for Raman and 1632:1650 cm− 1 (triple helix: α-like helix collagen) for IR. The ratios show a significant difference between the two classes. To support this qualitative analysis, logistic regression was performed on the univariate data to classify the samples quantitatively into one of the two groups. Accuracy for Raman data was 90% and for ATR-FTIR data 100%. Both Raman and ATR-FTIR complemented each other very well in differentiating the two groups. As a comparison, and to reconfirm the classification, multivariate analysis was performed using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The results obtained indicate good classification between the two leather groups based on protein and lipid content. Principal component score 2 (PC2) distinguishes OSP and DA by symmetrically grouping samples at positive and negative extremes. The study demonstrates an excellent model for wider research on vibrational spectroscopy for early and rapid diagnosis of leather quality.
The medial longitudinal arch height has an effect on kinetic parameters during gait and might be related to the risk of injury. For the assessment of foot structures, the center of pressure (COP) trajectory is a more reliable and practical parameter than plantar pressure. This study aimed to clarify the COP trajectory and velocity characteristics in the medial-lateral and anterior-posterior direction of individuals with a high-arched foot during barefoot walking.
Sixty-two healthy young adults were asked to walk over a Footscan pressure plate to record the COP parameters during the stance phase of walking.
Compared to normal arched feet, the COP during forefoot contact and foot flat phases of high-arched feet shifted anteriorly (19.9 mm and 15.1 mm, respectively), and the mean velocity of COP in anterior-posterior direction decreased by 0.26 m/s and increased by 0.044 m/s during these two phases respectively.
The findings of this study suggest that the displacement and velocity of COP in anterior-posterior direction was different between high-arched and normal-arched subjects during barefoot walking, which can be used for the assessment of gait characteristics for high-arched individuals. The results of this study may provide insights into modifying clinical intervention for individuals with high-arched feet to enhance rehabilitation and prevent injuries and have implications for assessing the design of footwear and foot orthotics.
The aim of this research is to develop a novel non-leaching antimicrobial waterborne polyurethane (WPU) leather coating material with covalently attached quaternary phosphonium salt (QPS). The structure of the QPS-bearing WPU has been identified, and their thermal stability, mechanical property, and antimicrobial performance have been investigated. The results reveal that the incorporation of QPS slightly reduces the thermal stability of WPU material but would not affects its usability as leather coating. Despite the presence of hydrophobic benzene in QPS structure, the strong hydration of its cationic groups leads to the increased surface contact angle (SCA) and water absorption rate (WAR) of the films, suggesting that the water resistance of the films needs to be improved for the purpose of leather coatings. Antibacterial tests demonstrate that when the QPS content is 20 wt%, QPS-bearing WPU shows effective antimicrobial activity against bacteria. The WPU containing QPS prepared in this study is a non-leaching antimicrobial material and has great potential application as leather coating.