Apr 2024, Volume 10 Issue 2
    

  • Select all
  • research-article
    Yiduo Liu, Junjie Hu, Bing Yan

    The endoplasmic reticulum (ER) is an essential component of the endomembrane system in eukaryotes and plays a crucial role in protein and lipid synthesis, as well as the maintenance of calcium homeostasis. Morphologically, the ER is composed primarily of sheets and tubules. The tubular ER is composed of a network of tubular membrane structures, each with diameters ranging from 30 to 50 nanometers. In recent years, there has been in-depth research on the molecular mechanisms of membrane shaping and membrane fusion of the tubular ER. However, there is still limited understanding of the specific physiological functions of the tubular ER. Here, we report a protocol that combines differential centrifugation and immunoprecipitation to specifically enrich microsomes originating from the tubular ER in yeast. The ER tubule-derived microsomes can be further used for proteomic and lipidomic studies or other biochemical analyses.

  • research-article
    Yuwei Huang, Li Yu

    Migrasomes are a novel type of cell organelle that form on the retraction fibers at the rear of migrating cells. In recent years, numerous studies have unveiled the mechanisms of migrasome formation and have highlighted significant roles of migrasomes in both physiological and pathological processes. Building upon the strategies outlined in published works and our own research experiences, we have compiled a comprehensive set of protocols for observing migrasomes. These step-by-step instructions encompass various aspects such as cell culture, labeling, imaging, in vitro reconstitution, and statistical analysis. We believe that these protocols serve as a valuable resource for researchers exploring migrasome biology.

  • research-article
    Miao Ye, Yuting Chen, Zhaojie Liu, Yigang Wang, Cong Yi

    Ribophagy, the cellular process wherein ribosomes are selectively self-digested through autophagy, plays a pivotal role in maintaining ribosome turnover. Understanding the molecular regulatory mechanisms governing ribophagy is pivotal to uncover its significance. Consequently, the establishment of methods for detecting ribophagy becomes important. In this protocol, we have optimized, enriched, and advanced existing ribophagy detection techniques, including immunoblotting, fluorescence microscopy, and transmission electron microscopy (TEM), to precisely monitor and quantify ribophagic events. Particularly noteworthy is the introduction of TEM technology for yeast ribophagy detection. In summary, the delineated methods are applicable for detecting ribophagy in both yeast and mammals, laying a solid foundation for further exploring the physiological importance of ribophagy and its potential implications in diverse cellular environments.

  • research-article
    Xiaochuan Fu, Shuyan Zhang, Pingsheng Liu

    The lipid droplet (LD) is a conserved organelle that exists in almost all organisms, ranging from bacteria to mammals. Dysfunctions in LDs are linked to a range of human metabolic syndromes. The formation of protein complexes on LDs is crucial for maintaining their function. Investigating how proteins interact on LDs is essential for understanding the role of LDs. We have developed an effective method to uncover protein–protein interactions and protein complexes specifically on LDs. In this method, we conduct co-immunoprecipitation (co-IP) experiments using LD proteins extracted directly from isolated LDs, rather than utilizing proteins from cell lysates. To elaborate, we begin by purifying LDs with high-quality and extracting LD-associated proteins. Subsequently, the co-IP experiment is performed on these LD-associated proteins directly, which would enhance the co-IP experiment specificity of LD-associated proteins. This method enables researchers to directly unveil protein complexes on LDs and gain deeper insights into the functional roles of proteins associated with LDs.

  • research-article
    Qiuyuan Yin, Chonglin Yang

    Lysosomes are the degradation centers and signaling hubs in the cell. Lysosomes undergo adaptation to maintain cell homeostasis in response to a wide variety of cues. Dysfunction of lysosomes leads to aging and severe diseases including lysosomal storage diseases (LSDs), neurodegenerative disorders, and cancer. To understand the complexity of lysosome biology, many research approaches and tools have been developed to investigate lysosomal functions and regulatory mechanisms in diverse experimental systems. This review summarizes the current approaches and tools adopted for studying lysosomes, and aims to provide a methodological overview of lysosomal research and related fields.

  • research-article
    Yusheng Xing, Yannan Jian, Xiaodan Zhao, Yue Zhang, Zhenqian Zhang, Xing Zhang, Xiaoyan Zhang

    In animal cells, the Golgi apparatus serves as the central hub of the endomembrane secretory pathway. It is responsible for the processing, modification, and sorting of proteins and lipids. The unique stacking and ribbon-like architecture of the Golgi apparatus forms the foundation for its precise functionality. Under cellular stress or pathological conditions, the structure of the Golgi and its important glycosylation modification function may change. It is crucial to employ suitable methodologies to study the structure and function of the Golgi apparatus, particularly when assessing the involvement of a target protein in Golgi regulation. This article provides a comprehensive overview of the diverse microscopy techniques used to determine the specific location of the target protein within the Golgi apparatus. Additionally, it outlines methods for assessing changes in the Golgi structure and its glycosylation modification function following the knockout of the target gene.

  • research-article
    Yaling Li, Aiping Wu, Hang-Yu Zhou