Biophysics Reports >> 2023, Vol.9 >> Issue (4) : 215 - 229 https://doi.org/10.52601/bpr.2023.230008
 

Theoretical framework and experimental solution for the air−water interface adsorption problem in cryoEM

Joon S. Kang, Xueting Zhou, Yun-Tao Liu, Kaituo Wang, Z. Hong Zhou
1 Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
2 Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
3 California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
 
HTML PDF
 
Abstract

As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously “disappear” on cryoEM grids. However, the reasons for such misbehavior are not well understood, which limits systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air–water interface (AWI) to lower the total potential surface energy-rationalizing the use of surfactant, which is a direct solution to reduce the surface tension of the aqueous solution. By performing cryogenic electron tomography (cryoET) on the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradually reducing the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that suitable surfactants do not damage the biological complex, thus suggesting that they might provide a practical, simple, and general solution to the problem for high-resolution cryoEM. Applying this solution to a real-world AWI adsorption problem involving a more challenging membrane protein, namely, the ClC-1 channel, has resulted in its near-atomic structure determination using cryoEM.

Keywords : CryoEM, CryoET, Sample preparation, Air–water interface adsorption, Surfactant, Surface energy
Corresponding Author(s): Z. Hong Zhou
Issue Date: 31 Aug 2023
 
References:
null Bai XC, Fernandez IS, McMullan G, Scheres SH Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles Elife 2013 2 e0046 Bai XC, Fernandez IS, McMullan G, Scheres SH (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2: e0046. https://doi.org/10.7554/eLife.00461
null Chamberlain AK, Handel TM, Marqusee S Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH Nat Struct Biol 1996 3 9 782 787 Chamberlain AK, Handel TM, Marqusee S (1996) Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol 3(9): 782?787
null null
null Chen S, Li J, Vinothkumar KR, Henderson R Interaction of human erythrocyte catalase with air–water interface in cryoEM Microscopy (Oxf) 2022 71 Supplement_1 i51 i59 Chen S, Li J, Vinothkumar KR, Henderson R (2022) Interaction of human erythrocyte catalase with air–water interface in cryoEM. Microscopy (Oxf) 71(Supplement_1): i51?i59
null Chu CH, Sarangadharan I, Regmi A, Chen YW, Hsu CP, Chang WH, Lee GY, Chyi JI, Chen CC, Shiesh SC, Lee GB, Wang YL Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum Sci Rep 2017 7 1 5256 Chu CH, Sarangadharan I, Regmi A, Chen YW, Hsu CP, Chang WH, Lee GY, Chyi JI, Chen CC, Shiesh SC, Lee GB, Wang YL (2017) Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Sci Rep 7(1): 5256. https://doi.org/10.1038/s41598-017-05426-6
null Cieplak M, Allan DB, Leheny RL, Reich DH Proteins at air-water interfaces: a coarse-grained model Langmuir 2014 30 43 12888 12896 Cieplak M, Allan DB, Leheny RL, Reich DH (2014) Proteins at air-water interfaces: a coarse-grained model. Langmuir 30(43): 12888?12896
null null
null null
null Fan H, Wang B, Zhang Y, Zhu Y, Song B, Xu H, Zhai Y, Qiao M, Sun F A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI Nat Commun 2021 12 1 7257 Fan H, Wang B, Zhang Y, Zhu Y, Song B, Xu H, Zhai Y, Qiao M, Sun F (2021) A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nat Commun 12(1): 7257. https://doi.org/10.1038/s41467-021-27596-8
null null
null Glaeser RM, Han B-G Opinion: hazards faced by macromolecules when confined to thin aqueous films Biophys Rep 2017 3 1 1 7 Glaeser RM, Han B-G (2017) Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys Rep 3(1): 1?7
null Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE UCSF ChimeraX: meeting modern challenges in visualization and analysis Protein Sci 2018 27 1 14 25 Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27(1): 14?25
null Graham DE, Phillips MC Proteins at liquid interfaces: I Kinetics of adsorption and surface denaturation. J Colloid Interface Sci 1979 70 3 403 414 Graham DE, Phillips MC (1979) Proteins at liquid interfaces: I. Kinetics of adsorption and surface denaturation. J Colloid Interface Sci 70(3): 403?414
null Han Y, Fan X, Wang H, Zhao F, Tully CG, Kong J, Yao N, Yan N High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy Proc Natl Acad Sci USA 2020 117 2 1009 1014 Han Y, Fan X, Wang H, Zhao F, Tully CG, Kong J, Yao N, Yan N (2020) High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc Natl Acad Sci USA 117(2): 1009?1014
null Hauner IM, Deblais A, Beattie JK, Kellay H, Bonn D The dynamic surface tension of water J Phys Chem Lett 2017 8 7 1599 1603 Hauner IM, Deblais A, Beattie JK, Kellay H, Bonn D (2017) The dynamic surface tension of water. J Phys Chem Lett 8(7): 1599?1603
null null
null Hoffmann PC, Kreysing JP, Khusainov I, Tuijtel MW, Welsch S, Beck M Structures of the eukaryotic ribosome and its translational states in situ Nat Commun 2022 13 1 7435 Hoffmann PC, Kreysing JP, Khusainov I, Tuijtel MW, Welsch S, Beck M (2022) Structures of the eukaryotic ribosome and its translational states in situ. Nat Commun 13(1): 7435. https://doi.org/10.1038/s41467-022-34997-w
null Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J, Kapoor A, Basak S, Samanta A, Han X, Chakrapani S, Zhou ZH, Filizola M, Rohacs T, Han S, Moiseenkova-Bell VY Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM Nat Struct Mol Biol 2018 25 1 53 60 Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J, Kapoor A, Basak S, Samanta A, Han X, Chakrapani S, Zhou ZH, Filizola M, Rohacs T, Han S, Moiseenkova-Bell VY (2018) Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat Struct Mol Biol 25(1): 53?60
null Inácio ?S, Mesquita KA, Baptista M, Ramalho-Santos J, Vaz WLC, Vieira OV In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception PLoS One 2011 6 5 e19850 e19850 Inácio ?S, Mesquita KA, Baptista M, Ramalho-Santos J, Vaz WLC, Vieira OV (2011) In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One 6(5): e19850?e19850
null Jain T, Sheehan P, Crum J, Carragher B, Potter CS Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM J Struct Biol 2012 179 1 68 75 Jain T, Sheehan P, Crum J, Carragher B, Potter CS (2012) Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179(1): 68?75
null null
null null
null Koepf E, Schroeder R, Brezesinski G, Friess W The film tells the story: physical-chemical characteristics of IgG at the liquid-air interface Eur J Pharm Biopharm 2017 119 396 407 Koepf E, Schroeder R, Brezesinski G, Friess W (2017) The film tells the story: physical-chemical characteristics of IgG at the liquid-air interface. Eur J Pharm Biopharm 119: 396?407
null Kremer JR, Mastronarde DN, McIntosh JR Computer visualization of three-dimensional image data using IMOD J Struct Biol 1996 116 1 71 76 Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116(1): 71?76
null Liao M, Cao E, Julius D, Cheng Y Structure of the TRPV1 ion channel determined by electron cryo-microscopy Nature 2013 504 7478 107 112 Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478): 107?112
null Liao W-C, Zatz JL Surfactant solutions as test liquids for measurement of critical surface tension J Pharm Sci 1979 68 4 486 488 Liao W-C, Zatz JL (1979) Surfactant solutions as test liquids for measurement of critical surface tension. J Pharm Sci 68(4): 486?488
null Lyumkis D Challenges and opportunities in cryo-EM single-particle analysis J Biol Chem 2019 294 13 5181 5197 Lyumkis D (2019) Challenges and opportunities in cryo-EM single-particle analysis. J Biol Chem 294(13): 5181?5197
null MacRitchie F Desorption of proteins from the air/water interface J Colloid Interface Sci 1985 105 1 119 123 MacRitchie F (1985) Desorption of proteins from the air/water interface. J Colloid Interface Sci 105(1): 119?123
null Maity H, Maity M, Krishna MMG, Mayne L, Englander SW Protein folding: the stepwise assembly of foldon units Proc Natl Acad Sci USA 2005 102 13 4741 4746 Maity H, Maity M, Krishna MMG, Mayne L, Englander SW (2005) Protein folding: the stepwise assembly of foldon units. Proc Natl Acad Sci USA 102(13): 4741?4746
null Mastronarde DN Automated electron microscope tomography using robust prediction of specimen movements J Struct Biol 2005 152 1 36 51 Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152(1): 36?51
null Mondal S, Phukan M, Ghatak A Estimation of solid-liquid interfacial tension using curved surface of a soft solid Proc Natl Acad Sci USA 2015 112 12563 12568 Mondal S, Phukan M, Ghatak A (2015) Estimation of solid-liquid interfacial tension using curved surface of a soft solid. Proc Natl Acad Sci USA 112: 12563?12568
null Narsimhan G, Uraizee F Kinetics of adsorption of globular proteins at an air–water interface Biotechnol Prog. 1992 8 3 187 196 Narsimhan G, Uraizee F (1992) Kinetics of adsorption of globular proteins at an air–water interface. Biotechnol Prog. 8(3): 187?196
null Naydenova K, Russo CJ Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy Nature Commun 2017 8 1 629 Naydenova K, Russo CJ (2017) Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nature Commun 8(1): 629. https://doi.org/10.1038/s41467-017-00782-3
null Noble AJ, Dandey VP, Wei H, Brasch J, Chase J, Acharya P, Tan YZ, Zhang Z, Kim LY, Scapin G, Rapp M, Eng ET, Rice WJ, Cheng A, Negro CJ, Shapiro L, Kwong PD, Jeruzalmi D, des Georges A, Potter CS, Carragher B Routine single particle CryoEM sample and grid characterization by tomography Elife 2018a 29 7 e34257 Noble AJ, Dandey VP, Wei H, Brasch J, Chase J, Acharya P, Tan YZ, Zhang Z, Kim LY, Scapin G, Rapp M, Eng ET, Rice WJ, Cheng A, Negro CJ, Shapiro L, Kwong PD, Jeruzalmi D, des Georges A, Potter CS, Carragher B (2018a) Routine single particle CryoEM sample and grid characterization by tomography. Elife 29(7): e34257. https://doi.org/10.7554/eLife.34257
null Noble AJ, Wei H, Dandey VP, Zhang Z, Tan YZ, Potter CS, Carragher B Reducing effects of particle adsorption to the air–water interface in cryo-EM Nat Methods 2018b 15 10 793 795 Noble AJ, Wei H, Dandey VP, Zhang Z, Tan YZ, Potter CS, Carragher B (2018b) Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nat Methods 15(10): 793?795
null O'Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, Tegunov D, Blotz C, Singh N, Hagen WJH, Cramer P, Stulke J, Mahamid J, Rappsilber J In-cell architecture of an actively transcribing-translating expressome Science 2020 369 6503 554 557 O'Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, Tegunov D, Blotz C, Singh N, Hagen WJH, Cramer P, Stulke J, Mahamid J, Rappsilber J (2020) In-cell architecture of an actively transcribing-translating expressome. Science 369(6503): 554?557
null Pantelic RS, Suk JW, Magnuson CW, Meyer JC, Wachsmuth P, Kaiser U, Ruoff RS, Stahlberg H Graphene: substrate preparation and introduction J Struct Biol 2011 174 1 234 238 Pantelic RS, Suk JW, Magnuson CW, Meyer JC, Wachsmuth P, Kaiser U, Ruoff RS, Stahlberg H (2011) Graphene: substrate preparation and introduction. J Struct Biol 174(1): 234?238
null Park KH, Berrier C, Lebaupain F, Pucci B, Popot JL, Ghazi A, Zito F Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis Biochem J 2007 403 1 183 187 Park KH, Berrier C, Lebaupain F, Pucci B, Popot JL, Ghazi A, Zito F (2007) Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem J 403(1): 183?187
null Roh S-H, Hryc CF, Jeong H-H, Fei X, Jakana J, Lorimer GH, Chiu W Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM Proc Natl Acad Sci USA 2017 114 31 8259 8264 Roh S-H, Hryc CF, Jeong H-H, Fei X, Jakana J, Lorimer GH, Chiu W (2017) Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proc Natl Acad Sci USA 114(31): 8259?8264
null Russo CJ, Passmore LA Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas Nat Methods 2014 11 6 649 652 Russo CJ, Passmore LA (2014) Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat Methods 11(6): 649?652
null Russo CJ, Passmore LA Progress towards an optimal specimen support for electron cryomicroscopy Curr Opin Struct Biol 2016 37 81 89 Russo CJ, Passmore LA (2016) Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 37: 81?89
null Shuttleworth R The surface tension of solids Proc Natl Acad Sci USA 1950 63 444 457 Shuttleworth R (1950) The surface tension of solids. Proc Natl Acad Sci USA 63: 444?457
null Stauber T, Weinert S, Jentsch TJ Cell biology and physiology of CLC chloride channels and transporters Compr Physiol 2012 2 3 1701 1744 Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2(3): 1701?1744
null Taylor KA, Glaeser RM Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future J Struct Biol 2008 163 3 214 223 Taylor KA, Glaeser RM (2008) Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 163(3): 214?223
null Tegunov D, Cramer P Real-time cryo-electron microscopy data preprocessing with Warp Nat Methods 2019 16 11 1146 1152 Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16(11): 1146?1152
null null
null null
null Tribet C, Audebert R, Popot J-L Amphipols: Polymers that keep membrane proteins soluble in aqueous solutions Proc Natl Acad Sci USA 1996 93 26 15047 Tribet C, Audebert R, Popot J-L (1996) Amphipols: Polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93(26): 15047. https://doi.org/10.1073/pnas.93.26.15047
null Vinothkumar KR Membrane protein structures without crystals, by single particle electron cryomicroscopy Curr Opin Struct Biol 2015 33 103 114 Vinothkumar KR (2015) Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 33: 103?114
null Wang J, Chen L Domain motions in GroEL upon binding of an oligopeptide J Mol Biol. 2003 334 3 489 499 Wang J, Chen L (2003) Domain motions in GroEL upon binding of an oligopeptide. J Mol Biol. 334(3): 489?499
null Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Gronberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, Gourdon P Structure of the human ClC-1 chloride channel PLoS Biol 2019 17 4 e3000218 Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Gronberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, Gourdon P (2019) Structure of the human ClC-1 chloride channel. PLoS Biol 17(4): e3000218. https://doi.org/10.1371/journal.pbio.3000218
null Wiesbauer J, Prassl R, Nidetzky B Renewal of the air–water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface–active compounds Langmuir 2013 29 49 15240 15250 Wiesbauer J, Prassl R, Nidetzky B (2013) Renewal of the air–water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface–active compounds. Langmuir 29(49): 15240?15250
null Williams RC, Glaeser RM Ultrathin carbon support films for electron microscopy Science 1972 175 4025 1000 1001 Williams RC, Glaeser RM (1972) Ultrathin carbon support films for electron microscopy. Science 175(4025): 1000?1001
null Zhao Y, Chwastyk M, Cieplak M Topological transformations in proteins: effects of heating and proximity of an interface Sci Rep 2017 7 1 39851 Zhao Y, Chwastyk M, Cieplak M (2017) Topological transformations in proteins: effects of heating and proximity of an interface. Sci Rep 7(1): 39851. https://doi.org/10.1038/srep39851