
Proteomic analysis of B cells in peripheral lymphatic system reveals the dynamics during the systemic lupus erythematosus progression
Liming Sun, Yuanyuan Yin, Yuqing Cao, Chunlei Chen, Yutong Guo, Zeming Cai, Jiarui Wu, Qingrun Li
Biophysics Reports ›› 2025, Vol. 11 ›› Issue (2) : 129-142.
Proteomic analysis of B cells in peripheral lymphatic system reveals the dynamics during the systemic lupus erythematosus progression
In this study, we conducted a comprehensive proteomic analysis of B cells from the spleen, mesenteric lymph nodes (mLN), and peripheral blood mononuclear cells (PBMC) in a time-course model of systemic lupus erythematosus (SLE) using female MRL/lpr mice. By combining fluorescence-activated cell sorting (FACS) and 4D-Data-Independent Acquisition (4D-DIA) mass spectrometry, we quantified nearly 8000 proteins, identifying significant temporal and tissue-specific proteomic changes during SLE progression. PBMC-derived B cells exhibited early proteomic alterations by Week 9, while spleen-derived B cells showed similar changes by Week 12. We identified key regulatory proteins, including BAFF, BAFFR, and NFKB2, involved in B cell survival and activation, as well as novel markers such as CD11c and CD117, which have previously been associated with other immune cells. The study highlights the dynamic reprogramming of B cell proteomes across different tissues, with distinct contributions to SLE pathogenesis, providing valuable insights into the molecular mechanisms underlying B cell dysregulation in lupus. These findings offer potential therapeutic targets and biomarkers for SLE.
Proteomics / B cells / Beripheral lymphatic system / SLE
/
〈 |
|
〉 |