Cage layer osteoporosis (CLO) is a common bone metabolism disease in the breeding industry of China. However, effective prevention for CLO has not been developed. Icariin (ICA), the main bioactive component of the Chinese herb Epimedium, has been shown to have good therapeutic effects on bone-related diseases. In this study, the effects of ICA were further evaluated in a low-calcium diet-induced CLO, and a serum metabolomics assay was performed to understand the underlying mechanisms. A total of 144 31-wk-old Lohmann pink-shell laying hens were randomly allocated to 4 groups with 6 replicates of 6 hens per replicate. The 4 dietary treatment groups consisted of a basal diet (3.5% calcium), a low-calcium diet (2.0% calcium), and a low-calcium diet supplemented with 0.5 or 2.0 g/kg ICA. The results showed that ICA exerted good osteoprotective effects on low-calcium diet-induced CLO. ICA significantly increased femur bone mineral density, improved bone microstructure, decreased bone metabolic level, and upregulated mRNA expression of bone formation genes in femoral bone tissue. Serum untargeted metabolomics analysis showed that 8 metabolite levels were significantly changed after ICA treatment, including increased contents of 7-dehydrocholesterol, 7-oxocholesterol, desmosterol, PC (18:1(9Z)/18:1(9Z)), PS (18:0/18:1(9Z)), N,N-dimethylaniline and 2-hydroxy-butanoic acid and decreased N2,N2-dimethylguanosine. Metabolic pathway analysis based on the above 8 metabolites indicated that ICA mainly perturbed steroid biosynthesis and glycerophospholipid metabolism. These findings suggest that ICA can effectively prevent bone loss in low-calcium diet-induced CLO by mediating steroid biosynthesis and glycerophospholipid metabolism and provide new information for the regulation of bone metabolic diseases.
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling molecules that modulate various biological functions via activation of specific receptors and cell signaling pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.
The zoonotic cryptosporidiosis is globally distributed, one of the major diarrheal diseases in humans and animals. Cryptosporidium oocysts are also one of the major environmental concerns, making it a pathogen that fits well into the One Health concept. Despite its importance, fully effective drugs are not yet available. Anti-cryptosporidial drug discovery has historically faced many unusual challenges attributed to unique parasite biology and technical burdens. While significant progresses have been made recently, anti-cryptosporidial drug discovery still faces a major obstacle: identification of systemic drugs that can be absorbed by patients experiencing watery diarrhea and effectively pass through electron-dense (ED) band at the parasite-host cell interface to act on the epicellular parasite. There may be a need to develop an in vitro assay to effectively screen hits/leads for their capability to cross ED band. In the meantime, non-systemic drugs with strong mucoadhesive properties for extended gastrointestinal exposure may represent another direction in developing anti-cryptosporidial therapeutics. For developing both systemic and non-systemic drugs, a non-ruminant animal model exhibiting diarrheal symptoms suitable for routine evaluation of drug absorption and anti-cryptosporidial efficacy may be very helpful.
Three major human coronavirus disease outbreaks, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and 2019 coronavirus disease (COVID-19), occurred in the twenty-first century and were caused by different coronaviruses (CoVs). All these viruses are considered to have originated from bats and transmitted to humans through intermediate hosts. SARS-CoV-1 and SARS-CoV-2, disease agent of COVID-19, shared around 80% genomic similarity, and thus belong to SARS-related CoVs. As a natural reservoir of viruses, bats harbor numerous other SARS-related CoVs that could potentially infect humans around the world, causing SARS or COVID-19 like outbreaks in the future. In this review, we summarized the current knowledge of CoVs on geographical distribution, genetic diversity, cross-species transmission potential and possible pathogenesis in humans, aiming for a better understanding of bat SARS-related CoVs in the context of prevention and control.
The frequent emergence of coronavirus (CoV) epidemics has seriously threatened public health and stock farming. The major hosts for CoVs are birds and mammals. Although most CoVs inhabit their specific natural hosts, some may occasionally cross the host barrier to infect livestock and even people, causing a variety of diseases. Since the beginning of the new century, increasing attention has been given to research on CoVs due to the emergence of highly pathogenic and genetically diverse CoVs that have caused several epidemics, including the recent COVID-19 pandemic. CoVs belong to the Coronaviridae family of the Nidovirales order. Recently, advanced techniques for viral detection and viral genome analyses have enabled characterization of many new nidoviruses than ever and have greatly expanded the Nidovirales order with new classification and nomenclature. Here, we first provide an overview of the latest research progress in the classification of the Nidovirales order and then introduce the host range, genetic variation, genomic pattern and pathogenic features of epidemic CoVs and other epidemic viruses. This information will promote understanding of the phylogenetic relationship and infectious transmission of various pathogenic nidoviruses, including epidemic CoVs, which will benefit virological research and viral disease control.
Staphylococcal superantigen (SAg) toxins are the most notable virulence factors associated with Staphylococcus aureus, which is a pathogen associated with serious community and hospital acquired infections in humans and various diseases in animals. Recently, SAg toxins have become a superfamily with 29 types, including staphylococcal enterotoxins (SEs) with emetic activity, SE-like toxins (SEls) that do not induce emesis in primate models or have yet not been tested, and toxic shock syndrome toxin-1 (TSST-1). SEs and SEls can be subdivided into classical types (SEA to SEE) and novel types (SEG to SElY, SE01, SE02, SEl26 and SEl27). The genes of SAg toxins are located in diverse accessory genetic elements and share certain structural and biological properties. SAg toxins are heat-stable proteins that exhibit pyrogenicity, superantigenicity and capacity to induce lethal hypersensitivity to endotoxin in humans and animals. They have multiple pathogenicities that can interfere with normal immune function of host, increase the chances of survival and transmission of pathogenic bacteria in host, consequently contribute to the occurrence and development of various infections, persistent infections or food poisoning. This review focuses on the following aspects of SAg toxins: (1) superfamily members of classic and novelty discovered staphylococcal SAgs; (2) diversity of gene locations and molecular structural characteristics; (3) biological characteristics and activities; (4) multi-pathogenicity of SAgs in animal and human diseases, including bovine mastitis, swine sepsis, abscesses and skin edema in pig, arthritis and septicemia in poultry, and nosocomial infections and food-borne diseases in humans.
Porcine circovirus type 3 (PCV3), which was first detected in the United States of America in 2015, is a potential threat to the swine industry. However, the prevalence of PCV3 in Shanxi Province, China, is unclear. In this research, the prevalence and genetic diversity of PCV3 were investigated in above area. Lung tissue samples (n = 491) from 19 pig slaughterhouses across 11 cities throughout Shanxi Province were analyzed for PCV3 infection by PCR in 2019. The results showed that PCV3 positive rates in slaughterhouses and individuals were 100% (19/19) and 86.76% (426/491), respectively. PCV2 and PCV3 double-positive rates in slaughterhouses and individuals were 100% (19/19) and 59.27% (291/491), respectively. PCR positive samples were further sequenced and 8 PCV3 isolates were identified. The nucleotide homology of these isolates with other PCV3 isolates in NCBI database was 97.45–99.90%. A phylogenetic analysis, based on the complete genomic sequence and ORF2, divided these PCV3 strains into 2 major groups. Based on A24/V and R27/K amino acid mutations of capsid protein, the 8 identified PCV3 strains were separated to 2 clades. This was the first detailed investigation into the epidemiology of PCV3 in Shanxi Province. Our findings enabled us to assess the possibility of widespread transmission from this region. Thus, current findings establish a basis for further studies of genetic variations in PCV3 strains circulating in China.
The emergence and dissemination of colistin resistance in Enterobacteriaceae mediated by plasmid-borne mcr genes in recent years now pose a threat to public health. In this study, we isolated and characterized colistin-resistant and/or mcr-positive E. coli from pig farms in Central China. Between 2018 and 2019, 594 samples were collected and recovered 445 E. coli isolates. Among them, 33 with colistin resistance phenotypes and 37 that were positive for mcr genes were identified, including 34 positive for mcr-1, one positive for mcr-3, and two positive for both mcr-1 and mcr-3. An insertion of nine bases (“CTGGATACG”) into mcr-1 in four mcr-positive isolates led to gene dysfunction, and therefore did not confer the colistin resistance phenotype. Antimicrobial susceptibility testing revealed that 37 mcr-positive isolates showed severe drug resistance profiles, as 50% of them were resistant to 20 types of antibiotics. Multilocus sequence typing revealed a heterogeneous group of sequence types in mcr-positive isolates, among which ST10 (5/37), ST156 (5/37), and ST617 (4/37) were the predominant types. Plasmid conjugation assays showed that mcr-carrying plasmids of 25 mcr-positive isolates were conjugated with E. coli recipient, with conjugation frequencies ranging from 1.7 × 10-6 to 4.1 × 10-3 per recipient. Conjugation of these mcr genes conferred a colistin resistance phenotype upon the recipient bacterium. PCR typing of plasmids harbored in the 25 transconjugants determined six types of plasmid replicons, including IncX4 (14/25), FrepB (4/25), IncI2 (3/25), IncHI2 (2/25), FIB (1/25), and IncI1 (1/25). This study contributes to the current understanding of antibiotic resistance and molecular characteristics of colistin-resistant E. coli in pig farms.
Canine coronavirus (CCoV), a member of the genus Alphacoronavirus, is an enveloped, single-stranded positive-sense RNA virus that responsible for gastroenteritis in dogs. In this study, two CCoV isolates were successfully propagated from 53 CCoV-positive clinical specimens by serial passaging in A-72 cells. These two strains, CCoV JS1706 and CCoV JS1712, caused cytopathic effects in A-72 cells. The sizes of virus plaque formed by them differed in early passages. Electron microscopy revealed a large quantity of typical coronavirus particles with 80–120 nm in diameter in cell culture media and cytoplasm of infected cells, in which they appeared as inclusion bodies. RT-PCR analysis of S gene indicated that these two isolates were belonged to CCoV IIa subtype. Homology of RdRp, S, M and N proteins between the two strains were 100, 99.6, 99.2 and 100.0%, respectively, whereas they were 99.4–100%, 83.1–95.2%, 88.5–99.2% and 91.9–99.7% identity compared to CCoV II reference strains. Phylogenetic analysis of RdRp, S, M and N protein showed that they were closely related to CCoV II strains. These two subtype IIa isolates will be useful for evaluating the pathogenesis and evolution of CCoV and for developing diagnostic reagents and vaccines.
Porcine circovirus type 3 (PCV3) is a novel porcine circovirus associated with porcine dermatitis and nephritis syndrome (PDNS), reproductive failure, and multisystemic inflammation. Capsid protein (Cap) encoded by PCV3 ORF2 gene has been identified as an immunogenic protein. Currently, there is no immunofluorescence assay (IFA) available for serological diagnosis. Here, the N-terminal 33 amino acids of Cap protein were predicted to serve as a PCV3 nuclear localization signal (NLS). Two types of recombinant plasmids were constructed for recombinant protein expression in Sf9 cells by using a baculovirus expression system: plasmid rvBac-Pc for full-length Cap protein expression and rvBac-Sc for Cap protein expression with a honeybee melittin signal peptide in place of the predicted NLS sequence. Expression of the nuclear localization sequences was further analyzed by IFA. Strong and specific fluorescence signals were observed in the nucleus of rvBac-Pc-transfected cells and in the cytoplasm of rvBac-Sc-transfected cells. No cross-reactivity was observed with porcine circovirus type 2, porcine pseudorabies virus, classical swine fever virus, or porcine reproductive and respiratory syndrome virus. In summary, we developed two fluorescence detection modes for Cap protein that can be used to detect PCV3 antibodies. This method is suitable for the diagnosis and epidemiological investigation of PCV3. This study provides a reliable detection method for monitoring PCV3 antibody level in pigs in the future.
The major cause of pulmonary vascular remodeling in broilers is abnormal proliferation of vascular smooth muscle cells (VSMCs), and one of the main causes of pulmonary hypertension syndrome (PHS) in broilers is pulmonary artery vascular remodeling. Forty Arbor Acres (AA) broilers were randomly divided into four groups (n = 10): a control group (deionized water, 0 g/L NaCl), a freshwater group (FW, deionized water + 1 g/L NaCl), highly salinized freshwater group 1 (H-SFW-1, deionized water + 2.5 g/L NaCl) and highly salinized freshwater group 2 (H-SFW-2, deionized water + 5 g/L NaCl). The results of in vivo experiments showed that vascular smooth muscle of the broilers could be significantly proliferated by intake of high-salinity fresh water (H-SFW-1 & H-SFW-2), which significantly increased the content of angiotensin II (Ang II) and the expression of angiotensin II type 1 (AT1) receptor protein. Meanwhile, it significantly decreased the expression of dopamine receptor D4 (DRD4) protein. The results of in vitro experiments showed that exogenous Ang II induced the proliferation of primary VSMCs in broilers, which could be significantly inhibited by DRD4 agonists (D4A, HY-101384A) and enhanced by DRD4 inhibitors (D4I, HY-B0965). In addition, the results of immunoblotting and fluorescence quantitative PCR showed that AT1 receptors could be negatively regulated by DRD4 in VSMCs of broilers, either at the transcriptional or translational level. At the same time, the expression of AT1 receptor could be increased by DRD4 inhibition by D4I and decreased by DRD4 activation by D4A. The negative regulatory effect of DRD4 on AT1 receptor occurred in a dose-dependent manner. These results indicate that long-term intake of highly salinized fresh water can cause PHS in broilers, accompanied by varying degrees of proliferation of pulmonary artery smooth muscle. This mechanism may involve response of its receptor being induced by increased Ang II, while DRD4 can negatively regulate it.
Several studies in Ethiopia have shown a high prevalence of reproductive disorders (RDs) in dairy cows. However, there is a lack of information about the levels of knowledge among farming community about the causes associated with RDs. A questionnaire-based cross-sectional study design was administered to 278 livestock farmers (LFs) in the Kembata Tambaro zone to evaluate knowledge and preventive practices on infectious causes of RDs in dairy cows. The results show that almost all farmers had heard about RDs, but more than half did not realize that reproductive system infections (RSIs) could cause RDs in dairy cows. A significant number of participants were not aware of the spread of RSIs between animals through sharing of breeding bulls, ingestion of urine contaminated feed, unhygienic management, sharing of equipment between milking cows, and interactions with contagious animals. The majority of LFs reported that they frequently consulted with traditional healers regarding the treatment of RDs, but very few looked for veterinary assistance. The results of multivariable logistic regression analysis showed that level of education and living areas were factors significantly and positively associated with knowledge about RSIs. Likewise, occupation, level of education and being knowledgeable about RSIs were significantly associated with good preventive practices. Veterinarians and responsible authorities should take these results into consideration to educate farmers on preventing losses attributed to RSIs.
Escherichia coli has become one of the most important causes of calf diarrhea. The aim of this study is to determine the patterns of antimicrobial resistance of E. coli isolates from six cattle farms and to identify prominent resistance genes and virulence genes among the strains isolated from the diarrhea of calves. Antimicrobial susceptibility tests were performed using the disk diffusion method, and PCR was used to detect resistance and virulence genes. The prevalence of multidrug resistant (MDR) E. coli was 77.8% in dairy cattle and 63.6% in beef cattle. There were high resistance rates to penicillin (100%, 100%) and ampicillin (96.3%, 86.4%) in E. coli from dairy cattle and beef cattle. Interestingly, resistance rate to antimicrobials and distribution of resistance genes in E. coli isolated from dairy cattle were higher than those in beef cattle. Further analysis showed that the most prevalent resistance genes were bla TEM and aadA1 in dairy cattle and beef cattle, respectively. Moreover, seven diarrheagenic virulence genes (irp2, fyuA, Stx1, eaeA, F41, K99 and STa) were present in the isolates from dairy cattle, with a prevalence ranging from 3.7% to 22.22%. Six diarrheagenic virulence genes (irp2, fyuA, Stx1, eaeA, hylA and F41) were identified in the isolates from beef cattle, with a prevalence ranging from 2.27% to 63.64%. Our results provide important evidence for better exploring their interaction mechanism. Further studies are also needed to understand the origin and transmission route of E. coli in cattle to reduce its prevalence.
Infectious pandemics result in hundreds and millions of deaths, notable examples of the Spanish Flu, the Black Death and smallpox. The current pandemic, caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is unprecedented even in the historical term of pandemics. The unprecedentedness is featured by multiple surges, rapid identification of therapeutic options and accelerated development of vaccines. Remdesivir, originally developed for Ebola viral disease, is the first treatment of COVID-19 (Coronavirus disease 2019) approved by the United States Food and Drug Administration. As demonstrated by in vitro and preclinical studies, this therapeutic agent is highly potent with a broad spectrum activity against viruses from as many as seven families even cross species. However, randomized controlled trials have failed to confirm the efficacy and safety. Remdesivir improves some clinical signs but not critical parameters such as mortality. This antiviral agent is an ester/phosphorylation prodrug and excessive hydrolysis which increases cellular toxicity. Remdesivir is given intravenously, leading to concentration spikes and likely increasing the potential of hydrolysis-based toxicity. This review has proposed a conceptual framework for improving its efficacy and minimizing toxicity not only for the COVID-19 pandemic but also for future ones caused by remdesivir-sensitive viruses.
On August 14th, 2018, a Beijing resident living in Xicheng District found a female H. longicornis tick attached to the skin at the front of his upper shin. On examination, the patient was afebrile and appeared well. The species of the tick was identified through morphological characteristics and phylogenetic analysis based on cytochrome C oxidase subunit I. This H. longicornis tick was screened for tick-borne pathogens such as viruses, bacteria and parasites. RNA pathogens were screened by PCR and sequencing, while DNA pathogens were screened by metagenomic analyses. It was found that the tick was positive for the DNA sequences of zoonotic and animal pathogens such as A. phagocytophilum, Ehrlichia minasensis and C. burnetii. Considering the good health condition of the patient, we hypothesized that the pathogens originated from the tick specimen itself rather than host blood meal. For the first time, our study reveals the possible risk of transmission of tick-borne pathogens to human beings through tick bit in downtown Beijing. Further research is needed to screen for tick-borne pathogens among unfed ticks collected from central Beijing.
Influenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide. Genome structure of influenza D virus (IDV) is identical to that of influenza C virus (ICV), and phylogenetic analyses suggest that IDV and ICV share a common ancestry and high homology. To date, the prevalence of ICV and IDV in China is unclear, but these viruses represent a potential threat to public health due to cross-species transmission and zoonotic potential. To efficiently monitor ICV and IDV, it is necessary to establish a dual detection method to understand their prevalence and conduct in-depth research. A duplex real-time PCR method for the simultaneous detection of ICV and IDV was developed. TaqMan fluorescent probes and specific primers targeting NP gene of ICV and PB1 gene of IDV were designed. This method exhibited good specificity and sensitivity, and the detection limit reached 1 × 101 copies/μL of plasmid standards of each pathogen. Thirty-one clinical swine samples and 10 clinical cattle samples were analyzed using this method. One positive sample of IDV was detected, and the accuracy of clinical test results was verified by conventional PCR and DNA sequencing. The duplex real-time PCR detection method represents a sensitive and specific tool to detect ICV and IDV. It provides technical support for virus research and clinical diagnosis of ICV and IDV. This information will benefit animal and human health.
Rabies is an acute encephalitis caused by a lyssavirus. It is primarily transmitted through bites of infected dogs which results in the worldwide death of an estimated 59000 humans every year. The disease is preventable through the application of post-exposure prophylaxis (PEP) and its elimination has been demonstrated in many countries by applying multiple interventions simultaneously. Nonetheless, rabies is still widespread in many developing countries, primarily due to the poor implementation of intervention strategies that include inadequate dog-bite wound management practices, unavailability/unaffordability of PEP by the communities, failure to control the disease in free-roaming dogs and wildlife, improper dog population management, weak surveillance and diagnostic facilities and a lack of a One Health approach to the disease. In this review, strategies to control dog-mediated rabies through a One Health approach were discussed. We recommend applying multiple interventions against the disease by involving all the concerned stakeholders in selected urban and rural areas of the countries where rabies is endemic. An empirical demonstration of disease freedom in the selected areas through a One Health approach is needed to convince policymakers to invest in rabies prevention and control on the national level. This multifaceted One Health control model will enhance the likelihood of achieving the goal of global rabies eradication by 2030.
Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 are thought to transmit to humans via wild mammals, especially bats. However, evidence for direct bat-to-human transmission is lacking. Involvement of intermediate hosts is considered a reason for SARS-CoV-2 transmission to humans and emergence of outbreak. Large biodiversity is found in tropical territories, such as Brazil. On the similar line, this study aimed to predict potential coronavirus hosts among Brazilian wild mammals based on angiotensin-converting enzyme 2 (ACE2) sequences using evolutionary bioinformatics. Cougar, maned wolf, and bush dogs were predicted as potential hosts for coronavirus. These indigenous carnivores are philogenetically closer to the known SARS-CoV/SARS-CoV-2 hosts and presented low ACE2 divergence. A new coronavirus transmission chain was developed in which white-tailed deer, a susceptible SARS-CoV-2 host, have the central position. Cougar play an important role because of its low divergent ACE2 level in deer and humans. The discovery of these potential coronavirus hosts will be useful for epidemiological surveillance and discovery of interventions that can contribute to break the transmission chain.
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Porcine epidemic diarrhea (PED) caused by the porcine epidemic diarrhea virus (PEDV), is a severe infectious and devastating swine disease that leads to serious economic losses in the swine industry worldwide. An increased number of PED cases caused by variant PEDV have been reported in many countries since 2010. S protein is the main immunogenic protein containing some B-cell epitopes that can induce neutralizing antibodies of PEDV. In this study, the construction, expression and purification of Pseudomonas aeruginosa exotoxin A (PE) without domain III (PEΔIII) as a vector was performed for the delivery of PEDV S-A or S-B. PE(ΔIII) PEDV S-A and PE(ΔIII) PEDV S-B recombinant proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. The immunogenicity of PEDV S-A and PEDV S-B subunit vaccines were evaluated in mice. The results showed that PEDV-S-B vaccine could not only induce specific humoral and Th1 type-dominant cellular immune responses, but also stimulate PEDV-specific mucosal immune responses in mice. PEDV-S-B subunit vaccine is a novel candidate mucosal vaccine against PEDV infection.
Porcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.
Coronaviruses (CoVs) are a group of related enveloped RNA viruses that have severe consequences in a wide variety of animals by causing respiratory, enteric or systemic diseases. Porcine epidemic diarrhea virus (PEDV) is an economically important CoV distributed worldwide that causes diarrhea in pigs. nsp14 is a nonstructural protein of PEDV that is involved in regulation of innate immunity and viral replication. However, the function and mechanism by which nsp14 modulates and manipulates host immune responses remain largely unknown. Here, we report that PEDV nsp14 is an NF-κB pathway antagonist. Overexpression PEDV nsp14 protein remarkably decreases SeV-, poly (I:C)- and TNF-α-induced NF-κB activation. Meanwhile, expression of proinflammatory cytokines is suppressed by nsp14. nsp14 inhibits the phosphorylation of IKKs by interacting with IKKs and p65. Furthermore, nsp14 suppresses TNF-α-induced phosphorylation and nuclear import of p65. Overexpression nsp14 considerably increases PEDV replication. These results suggest a novel mechanism employed by PEDV to suppress the host antiviral response, providing insights that can guide the development of antivirals against CoVs.
Pasteurella multocida is a leading cause of respiratory disorders in pigs. This study was designed to understand the genotypical and antimicrobial resistant characteristics of P. multocida from pigs in China. To achieve this, we briefly investigated 158 P. multocida isolates from pigs with respiratory disorders in China between 2019 and 2020. Genotyping through multiplex PCR assays assigned these 158 isolates into capsular genotypes A (60.13%, 95/158), D (35.44%, 56/158), F (4.43%, 7/158), and/or lipopolysaccharide (LPS) genotypes L3 (28.48%, 45/158) and L6 (66.46%, 105/158). In addition, eight isolates (5.06%, 8/158) were found to be nontypable using the LPS genotyping method. When combining the capsular genotypes and the LPS genotypes, D: L6 (34.81%, 55/158) and A: L6 (31.65%, 50/158) were the predominant genotypes, followed by A: L3 (24.05%, 38/158). PCR detection of virulence factor-encoding genes showed that over 80% of the isolates were positive for exbB, tonB, exbD, ompH, ptfA, fimA, sodA, sodC, fur, ompA, oma87, plpB, hsf-2, nanH and hgbB, suggesting the presence of these genes were broad characteristics of P. multocida. We also found approximately 63.92% (101/158), 51.27% (81/158), 8.86% (14/158), 7.59% (12/158), 3.16% (5/158), 0.63% (1/158), and 0.63% (1/158) of the isolates grew well in media with the presence of colistin (4 μg/mL), tetracycline (16 μg/mL), tigecycline (1 μg/mL), ampicillin (32 μg/mL), chloramphenicol (32 μg/mL), cefepime (16 μg/mL), and ciprofloxacin (1 μg/mL), respectively. This study contributes to the understanding of genotypes and antimicrobial resistance profile of P. multocida currently circulation in pigs of China.
Porcine epidemic diarrhea virus (PEDV), as the main causative pathogen of viral diarrhea in pigs, has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry. Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease. In this study, a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label. Under optimal conditions, the newly developed latex bead-based lateral flow immunoassay (LBs-LFIA) attained a limit of detection (LOD) as low as 103.60 TCID50/mL and no cross-reactivity with other related swine viruses. To solve swine feces impurity interference, by adding a filtration unit design of LFIA without an additional pretreatment procedure, the LBs-LFIA gave good agreement (92.59%) with RT-PCR results in the analysis of clinical swine fecal samples (n = 108), which was more accurate than previously reported colloidal gold LFIA (74.07%) and fluorescent LFIA (86.67%). Moreover, LBs-LFIA showed sufficient accuracy (coefficient of variance [CV] < 15%) and stable (room temperature storage life > 56 days) performance for PEDV detection, which is promising for on-site analysis and user-driven testing in pig production system.
Sheep pox, goat pox, and lumpy skin diseases are economically significant and contagious viral diseases of sheep, goats and cattle, respectively, caused by the genus Capripoxvirus (CaPV) of the family Poxviridae. Currently, CaPV infection of small ruminants (sheep and goats) has been distributed widely and are prevalent in Central Africa, the Middle East, Europe and Asia. This disease poses challenges to food production and distribution, affecting rural livelihoods in most African countries, including Ethiopia. Transmission occurs mainly by direct or indirect contact with infected animals. They cause high morbidity (75-100% in endemic areas) and mortality (10-85%). Additionally, the mortality rate can approach 100% in susceptible animals. Diagnosis largely relies on clinical symptoms, confirmed by laboratory testing using real-time PCR, electron microscopy, virus isolation, serology and histology. Control and eradication of sheep pox virus (SPPV), goat pox virus (GTPV), and lumpy skin disease (LSDV) depend on timely recognition of disease eruption, vector control, and movement restriction. To date, attenuated vaccines originating from KSGPV O-180 strains are effective and widely used in Ethiopia to control CaPV throughout the country. This vaccine strain is clinically safe to control CaPV in small ruminants but not in cattle which may be associated with insufficient vaccination coverage and the production of low-quality vaccines.
Comprehensive identification of conditionally essential genes requires efficient tools for generating high-density transposon libraries that, ideally, can be analysed using next-generation sequencing methods such as Transposon Directed Insertion-site Sequencing (TraDIS). The Himar1 (mariner) transposon is ideal for generating near-saturating mutant libraries, especially in AT-rich chromosomes, as the requirement for integration is a TA dinucleotide, and this transposon has been used for mutagenesis of a wide variety of bacteria. However, plasmids for mariner delivery do not necessarily work well in all bacteria. In particular, there are limited tools for functional genomic analysis of Pasteurellaceae species of major veterinary importance, such as swine and cattle pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, respectively. Here, we developed plasmids, pTsodCPC9 and pTlacPC9 (differing only in the promoter driving expression of the transposase gene), that allow delivery of mariner into both these pathogens, but which should also be applicable to a wider range of bacteria. Using the pTlacPC9 vector, we have generated, for the first time, saturating mariner mutant libraries in both A. pleuropneumoniae and P. multocida that showed a near random distribution of insertions around the respective chromosomes as detected by TraDIS. A preliminary screen of 5000 mutants each identified 8 and 14 genes, respectively, that are required for growth under anaerobic conditions. Future high-throughput screening of the generated libraries will facilitate identification of mutants required for growth under different conditions, including in vivo, highlighting key virulence factors and pathways that can be exploited for development of novel therapeutics and vaccines.
Tumors are one of the leading causes to death in pet dogs among diseases. The tumor incidence of pet dogs has been increasing, raising widespread concern. In this study, retrospective analysis was performed with 246 tumor cases registered in Xi’an Animal Hospital, Northwest A&F University from 2009 to 2018. Correlations of sex, age and breed with tumor incidences were evaluated. The results showed that reproductive system tumors occupied the highest proportion (39.84%), followed by cutaneous tumors (28.05%), digestive tumors (18.70%) and ocular tumor (4.47%). Among the reproductive system tumors, breast tumors are the most common tumor in female pet dogs, especially for Pekingese (11.43%). Female dogs with high susceptibility to breast tumors were at the ages of 6–18 years old. As far as cutaneous tumors were concerned, the male pet dogs at all ages, particularly Golden Retrievers (17.39%), showed a high incidence. By contrast, male Samoyed aged from 4 to 13 years had the highest incidence (15.22%) of digestive tumors. In addition, pet dogs with ocular tumors mainly happened at the ages of 0–1 years and 6–13 years. Collectively, our findings are significant to develop effective measures of medical surveillance for pet dogs’ health and will provide insights for comparative oncology.