A high-content screening platform for antiviral drug discovery using a recombinant African swine fever virus

Challika Kaewborisuth , Artit Khonsanit , Donnaya Thanakitpipattana , Nathiphat Tanwattana , Benjamas Liwnaree , Jennifer Luangsa-ard , Nopporn Chutiwitoonchai

Animal Diseases ›› 2026, Vol. 6 ›› Issue (1) : 3

PDF
Animal Diseases ›› 2026, Vol. 6 ›› Issue (1) :3 DOI: 10.1186/s44149-025-00212-8
Original Article
research-article

A high-content screening platform for antiviral drug discovery using a recombinant African swine fever virus

Author information +
History +
PDF

Abstract

African swine fever (ASF), caused by African swine fever virus (ASFV), is a devastating disease of domestic pigs with mortality rates approaching 100%, leading to severe global economic losses. No effective vaccines or antivirals are available, highlighting the urgent need for novel therapeutic strategies and efficient screening tools. We developed a recombinant ASFV-expressing dual reporter (mCherry and NanoLuc), rASFV_mChNluc, and established a high-content screening (HCS) platform optimized for cost-effective, low-labor analysis via the mCherry reporter. The assay demonstrated excellent robustness (Z′-factor = 0.669±0.064) and successfully verified the activity of the known ASFV inhibitor AraC, confirming inhibition at the postinfection stage. Screening of an in-house fungal extract library (493 extracts) identified 25 hits (5.07%) that reduced viral infectivity to < 5%. Extracts from the insect fungi Beauveria neobassiana and Samsoniella aurantia showed potent activity, with an SI > 62.81 (EC₅₀ = 1.99±0.71 µg/mL) and an SI > 42.92 (EC₅₀ = 11.65±2.99 µg/mL), respectively. Time-of-addition assays indicated that B. neobassiana acts at multiple replication stages, whereas S. aurantia targets the postinfection stage. This study establishes a robust ASFV HCS platform for efficient high-throughput antiviral discovery and highlights fungi as a promising source of novel ASFV inhibitors.

Keywords

African swine fever virus / Antiviral discovery / High-content screening / Fungal extract

Cite this article

Download citation ▾
Challika Kaewborisuth, Artit Khonsanit, Donnaya Thanakitpipattana, Nathiphat Tanwattana, Benjamas Liwnaree, Jennifer Luangsa-ard, Nopporn Chutiwitoonchai. A high-content screening platform for antiviral drug discovery using a recombinant African swine fever virus. Animal Diseases, 2026, 6(1): 3 DOI:10.1186/s44149-025-00212-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al Khoury C, Bashir Z, Tokajian S, Nemer N, Merhi G, Nemer G. In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Computers in Biology and Medicine, 2022, 141 105171

[2]

Arabyan E, Hakobyan A, Hakobyan T, Grigoryan R, Izmailyan R, Avetisyan A, Karalyan Z, Jackman JA, Ferreira F, Elrod CC, Zakaryan H. Flavonoid library screening reveals kaempferol as a potential antiviral agent against African swine fever virus. Frontiers in Microbiology, 2021, 12 736780

[3]

Chen Y, Song Z, Chang H, Guo Y, Wei Z, Sun Y, Gong L, Zheng Z, Zhang G. Dihydromyricetin inhibits African swine fever virus replication by downregulating toll-like receptor 4-dependent pyroptosis in vitro. Veterinary Research, 2023, 54(1): 58

[4]

Dixon LK. Advances in African swine fever virus molecular biology and host interactions contributing to new tools for control. Journal of Virology, 2025, 99(6 e0093224

[5]

Geng R, Yin D, Liu Y, Lv H, Zhou X, Bao C, Gong L, Shao H, Qian K, Chen H, Qin A. Punicalagin inhibits African swine fever virus replication by targeting early viral stages and modulating inflammatory pathways. Veterinary Sciences, 2024

[6]

Guo S, Zhang Y, Liu Z, Wang D, Liu H, Li L, Chen Q, Yang D, Liu Q, Guo H, Mou S, Chen H, Wang X. Brincidofovir is a robust replication inhibitor against African swine fever virus in vivo and in vitro. Emerging Microbes & Infections, 2023, 12(22220572

[7]

He X, Li P, Cao H, Zhang X, Zhang M, Yu X, Sun Y, Ghonaim AH, Ma H, Li Y, Shi K, Zhu H, He Q, Li W. Construction of a recombinant African swine fever virus with firefly luciferase and eGFP reporter genes and its application in high-throughput antiviral drug screening. Antiviral Research, 2025, 233 106058

[8]

Jackman JA, Hakobyan A, Grigoryan R, Izmailyan R, Elrod CC, Zakaryan H. Antiviral screening of natural, anti-inflammatory compound library against African swine fever virus. Virology Journal, 2024, 21(195

[9]

Kuephadungphan, W., S. E. Helaly, C. Daengrot, S. Phongpaichit, J. J. Luangsa-Ard, V. Rukachaisirikul, and M. Stadler. 2017. Akanthopyrones A-D, alpha-Pyrones Bearing a 4-O-Methyl-beta-d-glucopyranose Moiety from the Spider-Associated Ascomycete Akanthomyces novoguineensis. Molecules 22 (7). https://doi.org/10.3390/molecules22071202.

[10]

Kwon, H. I., D. T. Do, H. Van Vo, S. C. Lee, M. H. Kim, D. T. T. Nguyen, T. M. Tran, Q. T. V. Le, T. T. N. Ngo, N. M. Nguyen, J. Y. Lee, and T. T. Nguyen. 2022. Development of optimized protocol for culturing African swine fever virus field isolates in MA104 cells. Canadian Journal of Veterinary Research 86 (4): 261–268. https://doi.org/10.21203/rs.3.rs-754616/v1.

[11]

Lan J, Luo R, Liu D, Qi C, Song X, Lu Z, Huang R, Yang Y, Sun Y, Zhang Y, Wang T, Qiu HJ. A novel high-throughput screen identifies phenazine-1-carboxylic acid as an inhibitor of African swine fever virus replication in primary porcine alveolar macrophages. Veterinary Research, 2025, 56(137

[12]

Li T, Zheng J, Huang T, Wang X, Li J, Jin F, Wei W, Chen X, Liu C, Bao M, Zhao G, Huang L, Zhao D, Chen J, Bu Z, Weng C. Identification of several African swine fever virus replication inhibitors by screening of a library of FDA-approved drugs. Virology, 2024, 593 110014

[13]

Li, Z., W. Chen, Z. Qiu, Y. Li, J. Fan, K. Wu, X. Li, M. Zhao, H. Ding, S. Fan, and J. Chen. 2022. African Swine Fever Virus: A Review. Life (Basel) 12 (8). https://doi.org/10.3390/life12081255.

[14]

Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomaki V. Antiviral agents from fungi: Diversity, mechanisms and potential applications. Frontiers in Microbiology, 2018, 9: 2325

[15]

Meloni D, Franzoni G, Oggiano A. Cell lines for the development of African Swine Fever virus vaccine candidates: An update. Vaccines, 2022

[16]

Nzimande B, Makhwitine JP, Mkhwanazi NP, Ndlovu SI. Developments in exploring fungal secondary metabolites as antiviral compounds and advances in HIV-1 inhibitor screening assays. Viruses, 2023

[17]

Olszewski D, Georgi F, Murer L, Andriasyan V, Kuttler F, Petkidis A, Witte R, Yakimovich A, Fischer L, Rozanova A, Yamauchi Y, Turcatti G, Greber UF. High-content, arrayed compound screens with rhinovirus, influenza A virus and herpes simplex virus infections. Scientific Data, 2022, 9(1610

[18]

Qi C, Lee J, Zhang Y, Chen H, Lv J, Wang Z, Li J, Wu X, Jung YS, Wang Z, Qian Y. Identification of cepharanthine as an effective inhibitor of African swine fever virus replication. Emerging Microbes & Infections, 2024, 13(12429624

[19]

Rai A, Pruitt S, Ramirez-Medina E, Vuono EA, Silva E, Velazquez-Salinas L, Carrillo C, Borca MV, Gladue DP. Identification of a continuously stable and commercially available cell line for the identification of infectious African swine fever virus in clinical samples. Viruses, 2020, 12(8 820

[20]

Ramirez-Medina, E., E. Vuono, V. O'Donnell, L. G. Holinka, E. Silva, A. Rai, S. Pruitt, C. Carrillo, D. P. Gladue, and M. V. Borca. 2019. Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses 11 (7). https://doi.org/10.3390/v11070599.

[21]

Reed LJ, Muench H. A Simple Method of Estimating Fifty Per Cent Endpoints. American Journal of Epidemiology, 1938, 27(3493-497

[22]

Riva L, Goellner S, Biering SB, Huang CT, Rubanov AN, Haselmann U, Warnes CM, De Jesus PD, Martin-Sancho L, Terskikh AV, Harris E, Pinkerton AB, Bartenschlager R, Chanda SK. The Compound SBI-0090799 Inhibits Zika Virus Infection by Blocking De Novo Formation of the Membranous Replication Compartment. Journal of Virology, 2021, 95(22 e0099621

[23]

Rodriguez JM, Salas ML. African swine fever virus transcription. Virus Research, 2013, 173(115-28

[24]

Rupcic Z, Rascher M, Kanaki S, Koster RW, Stadler M, Wittstein K. Two new cyathane diterpenoids from mycelial cultures of the medicinal mushroom Hericium erinaceus and the rare species, Hericium flagellum. International Journal of Molecular Sciences, 2018

[25]

Sum, W. C., N. Mitschke, H. Schrey, K. Wittstein, H. Kellner, M. Stadler, and J. C. Matasyoh. 2022. Antimicrobial and cytotoxic cyathane-xylosides from cultures of the Basidiomycete dentipellis fragilis. Antibiotics (Basel) 11 (8). https://doi.org/10.3390/antibiotics11081072.

[26]

Takahashi JA, Barbosa BVR, Lima Mtns, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorganic & Medicinal Chemistry, 2021, 46 116366

[27]

Thaweerattanasinp, T., C. Kaewborisuth, R. Viriyakitkosol, J. Saenboonrueng, A. Wanitchang, N. Tanwattana, C. Sonthirod, D. Sangsrakru, W. Pootakham, S. Tangphatsornruang, et al. 2024. Adaptation of African swine fever virus to MA-104 cells: Implications of unique genetic variations. Veterinary Microbiology 291:110016. https://doi.org/10.1016/j.vetmic.2024.110016.

[28]

Toshe R, Khalid SJ, Kemkuignou BM, Charria-Giron E, Eckhardt P, Sandargo B, Nuchthien K, Luangsa-Ard JJ, Opatz T, Schrey H, Ebada SS, Stadler M. Antibiofilm and cytotoxic metabolites from the entomopathogenic fungusSamsoniella aurantia. Beilstein Journal of Organic Chemistry, 2025, 21: 327-339

[29]

Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Yadav VK, Niazi P, Kumar P, Alghamdi S. A comprehensive review of the diversity of fungal secondary metabolites and their emerging applications in healthcare and environment. Mycobiology, 2024, 52(6): 335-387

[30]

Wang Q, Xu L. Beauvericin, a bioactive compound produced by fungi: A short review. Molecules, 2012, 17(3): 2367-2377

[31]

Weng C. Current research progress on the viral immune evasion mechanisms of African swine fever. Animal Diseases, 2024, 4: 18

[32]

Yang J, Konig A, Park S, Jo E, Sung PS, Yoon SK, Zusinaite E, Kainov D, Shum D, Windisch MP. A new high-content screening assay of the entire hepatitis B virus life cycle identifies novel antivirals. JHEP Reports, 2021, 3(4 100296

[33]

Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening, 1999, 4(2): 67-73

[34]

Zhang QY, Li JQ, Li Q, Zhang Y, Zhang ZR, Li XD, Zhang HQ, Deng CL, Yang FX, Xu Y, Zhang B. Identification of fangchinoline as a broad-spectrum enterovirus inhibitor through reporter virus based high-content screening. Virologica Sinica, 2024, 39(2301-308

Funding

Thailand Science Research and Innovation(4778292)

Ministry of Higher Education, Science, Research and Innovation, Thailand(P-23-50153)

RIGHTS & PERMISSIONS

The Author(s)

PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

/