Climate change and antimicrobial resistance in foodborne bacteria: a one health perspective for low- and middle-income countries

Muhammad Yasir Alhassan , Nusaiba Musa Muhammad , Abdulhamid Abdullahi Ahmad , Sumayya Alhassan Abdullahi

Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 51

PDF
Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) :51 DOI: 10.1186/s44149-025-00210-w
Review
review-article

Climate change and antimicrobial resistance in foodborne bacteria: a one health perspective for low- and middle-income countries

Author information +
History +
PDF

Abstract

Climate change is increasingly shaping the emergence and spread of antimicrobial resistance (AMR) in foodborne zoonotic bacteria, creating an urgent challenge at the intersection of human, animal, and environmental health. Rising temperatures, extreme rainfall, droughts, and flooding alter bacterial ecology, expand environmental resistomes, and drive greater antimicrobial use in livestock and aquaculture, thereby intensifying resistance in Salmonella, Campylobacter, Escherichia coli, Vibrio, and Listeria. Low- and middle-income countries (LMICs) face disproportionate risks, as climate variability interacts with weak surveillance systems, inadequate veterinary stewardship, and informal food markets to accelerate resistant infections. Evidence from LMIC case studies demonstrates how climate drivers exacerbate outbreaks and resistance trends; however, major gaps remain, including limited longitudinal surveillance, scarce genomic data, and the absence of climate-informed AMR risk models to guide interventions. This review highlights the need for integrated One Health strategies that combine climate-smart agriculture, strengthened food safety and WASH systems, robust genomic surveillance, and multisectoral governance aligned with global development goals. Without decisive and coordinated action, the convergence of climate change and AMR will deepen health inequities, undermine food security, and erode global progress toward sustainable health and development.

Keywords

Climate change / Antimicrobial resistance / Foodborne bacteria / One health / Low- and middle-income countries

Cite this article

Download citation ▾
Muhammad Yasir Alhassan, Nusaiba Musa Muhammad, Abdulhamid Abdullahi Ahmad, Sumayya Alhassan Abdullahi. Climate change and antimicrobial resistance in foodborne bacteria: a one health perspective for low- and middle-income countries. Animal Diseases, 2025, 5(1): 51 DOI:10.1186/s44149-025-00210-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abu-Rmeileh N, Crump L, Zinsstag J, Awad A, Abukhattab S, Taweel H, Hattendorf Jan, Abu-Rmeileh Niveen M. E., Vonaesch P. Systematic review and meta-analysis of integrated studies on Salmonella and Campylobacter prevalence, serovar, and phenotyping and genetic of antimicrobial resistance in the Middle East—a one health perspective. Antibiotics, 2022, 11536

[2]

Alhassan MY, Ahmad AA. Antimicrobial resistance in a changing climate: A one health approach for adaptation and mitigation. Bulletin of the National Research Centre, 2025, 49: 26.

[3]

Alhassan MY, Ahmad AA, Kabara MK. Revisiting antibiotic stewardship: Veterinary contributions to combating antimicrobial resistance globally. Bulletin of the National Research Centre, 2025, 49: 25.

[4]

Ali T, Ahmed S, Aslam M. Artificial intelligence for antimicrobial resistance prediction: Challenges and opportunities toward practical implementation. Antibiotics, 2023, 12(3523

[5]

Andersen, J., Borg, F., Karekezi, C., Furu, P., Kraef, C., Kallestrup, P., & Yonga, G. 2021. Climate change and health in urban informal settlements in low- and middle-income countries – A scoping review of health impacts and adaptation strategies. Global Health Action, 14. https://doi.org/10.1080/16549716.2021.1908064

[6]

Anikeeva O, Hansen A, Varghese B, Borg M, Zhang Y, Xiang J, Bi P. The impact of increasing temperatures due to climate change on infectious diseases. BMJ (Clinical Research Ed.), 2024, 387e079343

[7]

Baloch Z, Siddique A, Muzammil S, Khurshid M, Ijaz M, Chaudhry T, Aslam Bilal, Asghar Rubab, Shafique Muhammad, Siddique Abu Baker, Rasool Muhammad Hidayat, Chaudhry Tamoor Hamid, Aamir Afreenish, Rasool M. AMR and sustainable development goals: At a crossroads. Globalization and Health, 2024

[8]

Balta I, Lemon J, Murnane C, Pet I, Vintila T, McCleery D, Callaway T, Douglas A, Stef L, Corcionivoschi N. The one health aspect of climate events with impact on foodborne pathogens transmission. One Health, 2024, 19100926

[9]

Baral S, Carter L, Ahorlu C, Arjyal A, Fieroze F, Fonseca-Braga M, Tomley F. Community engagement: The key to tackling antimicrobial resistance (AMR) across a one health context?. Global Public Health, 2021, 17: 2647-2664.

[10]

Barrón-Montenegro R, Conejeros J, Álvarez D, Undurraga E, Rivera D, Moreno-Switt A. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica serovar Infantis. International Journal of Food Microbiology, 2023, 403110297

[11]

Bonhoeffer S, Pires J, Zhao C, Gilbert M, Criscuolo N, Laxminarayan R, Song J. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 2019

[12]

Butcher A, Sariola S, Compaoré A, Cañada J, Aïkpé M. Closing the GAP in antimicrobial resistance policy in Benin and Burkina Faso. Msystems, 2022

[13]

Chandipwisa C, Uwishema O, Debebe A, Abdalmotalib MM, Barakat R, Oumer A, John M, Taa L, Onyeaka H. Climate change and the global food chain: A catalyst for emerging infectious diseases?. International Journal of Emergency Medicine, 2025, 18(1): 149.

[14]

Cissé G. Food-borne and water-borne diseases under climate change in LMICs: Reducing environmental health exposure risks. Acta Tropica, 2019, 194: 181-188.

[15]

Coyne L, Thomas L, Gilbert W, Rushton J. Mitigating risks from livestock intensification: AMR and zoonoses. Animal, 2020, 14100123

[16]

De Verdal H, Pepey E, Combe M, Gozlan R, Pouyaud L, Reverter M, Vega-Heredía S. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nature Communications, 2020

[17]

Dejene, H., Nigatu, S., Jemberu, W., Haile, B., Berju, A., Mekonnen, S., & Molla, W. 2021. Health and economic burden of foodborne zoonotic diseases in Amhara, Ethiopia. PLOS ONE, 16. https://doi.org/10.1371/journal.pone.0262032

[18]

Dhewa T, Matthews K, Samtiya M, Puniya A. 2022. AMR in food chain. Foods, 11.https://doi.org/10.3390/foods11192966

[19]

Dietrich, J., Hammerl, J. A., Johne, A., Kappenstein, O., Loeffler, C., Nöckler, K., Rosner, B., Spielmeyer, A., Szabo, I., & Richter, M. H. 2023. Impact of climate change on foodborne infections and intoxications. Journal of Health Monitoring, 8(Suppl 3), 78–92. https://doi.org/10.25646/11403

[20]

Douglas, A., Vintila, T., Ștef, L., Lemon, J., Murnane, C., McCleery, D. & Balta, I. 2024. The One Health aspect of climate events with impact on foodborne pathogens transmission. One Health, 19, 100926. https://doi.org/10.1016/j.onehlt.2024.100926

[21]

Duchenne-Moutien RA. Climate change and emerging food safety issues: A review. Journal of Food Protection, 2021, 84(11): 1884-1897.

[22]

ECDC. 2012. Assessing the potential impacts of climate change on food- and water-borne diseases in Europe. ECDC Technical Report. https://www.ecdc.europa.eu/en/publications-data/assessing-potential-impacts-climate-change-food-and-waterborne-diseases-europe. Accessed 13 Feb 2025.

[23]

EFSA. 2024. Vibrio bacteria in seafood: Increased risk due to climate change and antimicrobial resistance. EFSA Report. https://www.efsa.europa.eu/en/news/vibrio-bacteria-seafood-increased-risk-due-climate-change-and-antimicrobial-resistance. Accessed 13 Feb 2025.

[24]

Elikwu, C., & Otaigbe, I. 2023. Drivers of inappropriate antibiotic use in LMICs. JAC-Antimicrobial Resistance, 5. https://doi.org/10.1093/jacamr/dlad062

[25]

Erume, J., Bjöersdorff, O., Hansson, I., Boqvist, S., & Okello, P. 2025. Antimicrobial resistant Campylobacter in broiler chickens and hygiene in informal markets. PLOS ONE, 20. https://doi.org/10.1371/journal.pone.0318516

[26]

Escobar L, Van De Vuurst P. Climate change and infectious disease: A review of evidence and research trends. Infectious Diseases of Poverty, 2023

[27]

Escobar LE, Ryan SJ, Stewart-Ibarra AM, Finkelstein JL, King CA, Qiao H, Polhemus ME. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149: 202-211.

[28]

FAO, OIE, & WHO. 2021. One Health approach to AMR mitigation in the Asia-Pacific Region. Geneva: World Health Organization. https://www.who.int/publications/i/item/sea-whe-15. Accessed 13 Feb 2025.

[29]

Grace D. Food safety in low and middle income countries. International Journal of Environmental Research and Public Health, 2015, 12: 10490-10507.

[30]

Grace D. Burden of foodborne disease in LMICs and scaling interventions. Food Security, 2023, 15: 1475-1488.

[31]

Hanefeld J, Legido-Quigley H, Hasan R, Mateus A, Spencer J, Khan M, Durrance-Bagale A. LMICs as AMR reservoirs: Policy discourse analysis. Health Policy and Planning, 2019, 34(3): 178-187.

[32]

Hasan, M., Ahmed, M., Bell, A., Hasan, N., Bashar, A., Chaput, D. & Trew, J. 2022. AMR in aquaculture: Societal drivers and complexity. Environmental Science & Technology, 56, 14891–14903. https://doi.org/10.1021/acs.est.2c00799

[33]

Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, Speybroeck N, Cawthorne A, Mathers C, Stein C, Angulo FJ, Devleesschauwer B. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine, 2015, 12(12e1001923

[34]

Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using genomics to track global antimicrobial resistance. Frontiers in Public Health, 2019, 7: 242.

[35]

Ikhimiukor O, Okeke I, Donado-Godoy P, Odih E. A bottom-up view of AMR transmission in developing countries. Nature Microbiology, 2022, 7: 757-765.

[36]

Ikhimiukor, O., & Okeke, I. 2023. AMR in food-animals in LMICs: A snapshot survey. One Health, 16. https://doi.org/10.1016/j.onehlt.2023.100489

[37]

Iskandar K, Molinier L, Hallit S, et al. . Surveillance of antimicrobial resistance in low- and middle-income countries: A scattered picture. Antimicrobial Resistance and Infection Control, 2021, 10: 63.

[38]

Jayakumar JM, Martinez-Urtaza J, Brumfield KD, Jutla AS, Colwell RR, Cordero OXcollaborators. Climate change and Vibrio vulnificus dynamics: A blueprint for infectious diseases. PLoS Pathogens, 2024, 2012e1012767

[39]

Joshua, C., Musila, L., Walson, J., Rafaï, C., Hasaballah, A., Naghavi, M., & Hayoon, A. 2023. AMR burden in the WHO African region: 2019 cross-country analysis. The Lancet Global Health, 12, e201–e216. https://doi.org/10.1016/S2214-109X(23)00539-9

[40]

Kaba HEJ, Kuhlmann E, Scheithauer S. Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe - A 30 country observational study. International Journal of Hygiene and Environmental Health, 2020, 2231): 151-158.

[41]

Kandel R, Subedi A, Adhikari S. Agile and reactive rabies vaccination techniques in countries with low and middle incomes. Animal Diseases, 2024, 4: 13.

[42]

Lake IR, Barker GC, Nichols G. Climate change and foodborne pathogens and illness in higher-income countries. Current Environmental Health Reports, 2018, 5(1): 187-196.

[43]

Levine, G., Fink, G., Lambiris, M., Tediosi, F., & Ya, K. 2024. Policies for antimicrobial stewardship in LMICs. BMC Public Health, 24. https://doi.org/10.1186/s12889-024-19542-2

[44]

Lio M, Maugeri A, Favara G, Barchitta M, Agodi A. Climate change and AMR: Two intertwined global challenges. International Journal of Environmental Research and Public Health, 2023, 20(3): 1681.

[45]

Montealegre, M., Kiiru, J., Tsukayama, P., Islam, M., Saito, M., Pajuelo, M. & Pickering, A. 2020. Informal settlements as AMR hotspots. Nature Microbiology, 5(6), 787–795. https://doi.org/10.1038/s41564-020-0722-0

[46]

Moore, C., Haines-Woodhouse, G., Kumaran, E., Henry, N., Reiner, R., Dolecek, C. & Zaraa, S. 2021. Global antibiotic consumption in humans: 2000–18 trends. The Lancet Planetary Health, 5(12), e893–e904. https://doi.org/10.1016/S2542-5196(21)00280-1

[47]

Morand S, Morse A, McIntyre K, Baylis M, Setzkorn C, Hepworth P. Climate sensitivity of human and animal pathogens in Europe. Scientific Reports, 2017, 7: 7134

[48]

Morris R, Wang S. One Health surveillance and response in Asia. Science in One Health, 2024, 3100067

[49]

Mutua F, Lambertini E, Thomas L, Grace D, Leahy E. Zoonoses control in LMIC traditional markets. Frontiers in Sustainable Food Systems, 2022, 6913560

[50]

Nashwan, A., Shah, H., Hussain, T., Rauf, S., & Ahmed, S. 2024. Environmental drivers of AMR in LMICs. Environmental Health Insights, 18. https://doi.org/10.1177/11786302241246420

[51]

Opatowski L, Vong S, Temime L, Opatowski M. A one health quantitative model to assess the risk of antibiotic resistance acquisition. Risk Analysis, 2020, 413): 494-508.

[52]

Pan Y, Tian C, Malakar P, Wu Q, Liu J, Zhang Z, Zhao Y. Meta-analysis for the global prevalence of foodborne pathogens exhibiting antibiotic resistance and biofilm formation. Frontiers in Microbiology, 2022, 13906490

[53]

Ravichandiran, V., Murti, K., Singh, A., Dar, M., Kaur, R., Iskandar, K. & Dhingra, S. 2021. Menace of antimicrobial resistance in LMICs: Current surveillance practices and control measures. Journal of Infection and Public Health, 15(2), 172–181. https://doi.org/10.1016/j.jiph.2021.12.008

[54]

Rescalvo-Casas C, Pérez-Tanoira R, Seijas-Pereda L, Prieto-Pérez L, Carmena D, Cuadros-González J, Hernando-Gozalo M. Global dynamics of gastrointestinal colonizations and antimicrobial resistance: Insights from international travelers to LMICs. Tropical Medicine and Infectious Disease, 2024, 9(8): 182.

[55]

Rushton, J., Akoko, J., Carron, M., O'Brien, S., Chang, Y., Chaloner, G. & Kiiru, J. 2018. Campylobacter, a zoonotic pathogen: Prevalence and risk factors in Nairobi's chicken meat system. PLOS Neglected Tropical Diseases, 12(8), e0006658. https://doi.org/10.1371/journal.pntd.0006658

[56]

Samanta I, Bandyopadhyay S. AMR in agri-food chain and companion animals: LMICs perspective. Frontiers in Veterinary Science, 2020, 7: 620.

[57]

Seo, H., Marks, F., Kwon, S., Han, J., Clark, A., Shaw, A. & Aanensen, D. 2023. Expanding human health AMR data in Asia: Implications for surveillance. Clinical Infectious Diseases, 77(Suppl 5), S507–S518. https://doi.org/10.1093/cid/ciad634

[58]

Vasco K, Hedman H, Zhang L. A review of AMR in poultry farming in low-resource settings. Animals, 2020, 10(8): 1264.

[59]

WHO. 2015. WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007–2015. WHO Press. https://www.who.int/publications/i/item/9789241565165. Accessed 13 Feb 2025.

[60]

WHO. 2022. GLASS Report 2022: Global antimicrobial resistance and use surveillance system. World Health Organization. https://iris.who.int/handle/10665/364996. Accessed 13 Feb 2025.

[61]

WHO & OIE. 2022. Tripartite and UNEP support One Health joint plan of action 2022–2026. WHO/OIE/UNEP. https://openknowledge.fao.org/bitstreams/fc522db2-9619-4f70-b6ba-64177f4865e6/download. Accessed 13 Feb 2025.

[62]

WHO. 2024. Action against antimicrobial resistance requires a One Health approach. World Health Organization. https://www.who.int/europe/publications/i/item/WHO-EURO-2024-9510-49282-73655. Accessed 13 Feb 2025.

RIGHTS & PERMISSIONS

The Author(s)

PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

/