T. gondii CLPTM1 enhances in vivo virulence through activation of the NF-κB/chemokine/macrophage signaling axis

Zhengming He , Di Zhang , Xinru Yue , Min Zhang , Yulian Wei , Junlong Zhao , Rui Fang

Animal Diseases ›› 2026, Vol. 6 ›› Issue (1) : 1

PDF
Animal Diseases ›› 2026, Vol. 6 ›› Issue (1) :1 DOI: 10.1186/s44149-025-00209-3
Original Article
research-article

T. gondii CLPTM1 enhances in vivo virulence through activation of the NF-κB/chemokine/macrophage signaling axis

Author information +
History +
PDF

Abstract

T. gondii is a globally prevalent intracellular parasite that poses significant public health challenges. However, its virulence mechanisms remain poorly understood. Here, we identified cleft lip and palate transmembrane protein 1 (CLPTM1, TGME49_205240) as a critical virulence factor and systematically characterized its role. The CLPTM1 deletion strain (Δclptm1) grows normally in vitro but completely loses virulence in vivo, with 100% survival of infected mice and no brain cyst formation. Serum IL-6 levels and tissue pathology in major organs were significantly reduced in Δclptm1-infected mice, indicating attenuated systemic inflammation and tissue damage. Transcriptomic analysis revealed that Δclptm1 infection markedly downregulated key chemokine genes (CCL5, CCR7 and CCL22) in macrophages. This trend was further supported by the reduced expression of these chemokines and decreased F4/80⁺ macrophage infiltration in liver and lung tissues. Concomitantly, diminished phosphorylation of IκB-α, along with decreased levels of p65 and its activated form pp65, suggests that CLPTM1 promotes chemokine expression by facilitating the activation of the NF-κB signaling pathway. Consistently, pp65 expression in liver and lung tissues was markedly reduced in the Δclptm1-infected group. Here, we delineate a mechanistic axis whereby CLPTM1 influences T. gondii virulence through the activation of the host NF-κB/chemokine/macrophage pathway, thereby promoting inflammation and immune cell infiltration. This study provides new insight into T. gondii pathogenesis and lays a foundation for the future development of diagnostic, therapeutic, and vaccine strategies against toxoplasmosis.

Keywords

Toxoplasma gondii / CLPTM1 / Acute virulence / NF-κB / Chemokines / Macrophages / Pathogenesis

Cite this article

Download citation ▾
Zhengming He, Di Zhang, Xinru Yue, Min Zhang, Yulian Wei, Junlong Zhao, Rui Fang. T. gondii CLPTM1 enhances in vivo virulence through activation of the NF-κB/chemokine/macrophage signaling axis. Animal Diseases, 2026, 6(1): 1 DOI:10.1186/s44149-025-00209-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmadian Elmi, Maryam, Nasrin Motamed, and Didier Picard. 2023. Proteomic analyses of the g protein-coupled estrogen receptor gper1 reveal constitutive links to endoplasmic reticulum, glycosylation, trafficking, and calcium signaling. Cells 12(21). https://doi.org/10.3390/cells12212571

[2]

Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: A collaboration between distinct secretory organelles. PLoS Pathogens, 2005, 1(2): e17

[3]

Alraies Z, Rivera CA, Delgado MG, Sanséau D, Maurin M, Amadio R, Maria Piperno G, Dunsmore G, Yatim A, Lacerda Mariano L, et al.. Cell shape sensing licenses dendritic cells for homeostatic migration to lymph nodes. Nature Immunology, 2024, 25(71193-1206

[4]

Barruet E, Morales BM, Cain CJ, Ton AN, Wentworth KL, Chan TV, Moody TA, Haks MC, Ottenhoff TH, Hellman J, et al.. NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight, 2018

[5]

Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathogens, 2009, 5(2): e1000309

[6]

Chen FZ, You LJ, Yang F, Wang LN, Guo XQ, Gao F, Hua C, Tan C, Fang L, Shan RQ, et al.. CNGBdb: China national genbank database. Yi Chuan, 2020, 42(8799-809

[7]

Chen L, Christian DA, Kochanowsky JA, Phan AT, Clark JT, Wang S, Berry C, Oh J, Chen X, Roos DS, et al.. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T-cell responses. Journal of Experimental Medicine, 2020

[8]

Chen J, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y, Zhan Q. Tumor-associated macrophage (TAM)-secreted CCL22 confers cisplatin resistance of esophageal squamous cell carcinoma (ESCC) cells by regulating the activity of diacylglycerol kinase α (DGKα)/NOX4 axis. Drug Resistance Update, 2024, 73: 101055

[9]

Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC, Joiner KA. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell, 2006, 125(2): 261-274

[10]

Deng L, Zeng Q, Wang M, Cheng A, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, et al.. Suppression of NF-κB activity: A viral immune evasion mechanism. Viruses, 2018

[11]

Du J, An R, Chen L, Shen Y, Chen Y, Cheng L, Jiang Z, Zhang A, Yu L, Chu D, et al.. Withdrawal: Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation. Journal of Biological Chemistry, 2022, 298(12102719

[12]

Ge Y, Craig AM. Haploinsufficiency of GABA(A) receptor-associated clptm1 enhances phasic and tonic inhibitory neurotransmission, suppresses excitatory synaptic plasticity, and impairs memory. The Journal of Neuroscience, 2024

[13]

Ge Y, Kang Y, Cassidy RM, Moon KM, Lewis R, Wong ROL, Foster LJ, Craig AM. Clptm1 limits forward trafficking of GABA(A) receptors to scale inhibitory synaptic strength. Neuron, 2018, 97(3596-610.e8

[14]

Gockley J, Montgomery KS, Poehlman WL, Wiley JC, Liu Y, Gerasimov E, Greenwood AK, Sieberts SK, Wingo AP, Wingo TS, et al.. Multitissue neocortical transcriptome-wide association study implicates 8 genes across 6 genomic loci in Alzheimer's disease. Genome Medicine, 2021, 13(1): 76

[15]

Gu L, Sang Y, Nan X, Zheng Y, Liu F, Meng L, Sang M, Shan B. CircCYP24A1 facilitates esophageal squamous cell carcinoma progression through binding PKM2 to regulate NF-κB-induced CCL5 secretion. Molecular Cancer, 2022, 21(1217

[16]

Guo X, Chen F, Gao F, Li L, Liu K, You L, Hua C, Yang F, Liu W, Peng C, et al.. CNSA: A data repository for archiving omics data. Database, 2020

[17]

Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz JF, Ortega-Barria E, Boothroyd JC. Toxoplasma gondii homolog of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infection and Immunity, 2000, 68(127078-7086

[18]

Hernández-de-Los-Ríos A, Murillo-Leon M, Mantilla-Muriel LE, Arenas AF, Vargas-Montes M, Cardona N, dela-Torre, A., Sepúlveda-Arias, J. C., Gómez-Marín, J. E. . Influence of two major toxoplasma gondii virulence factors (rop16 and rop18) on the immune response of peripheral blood mononuclear cells to human toxoplasmosis infection. Frontiers in Cellular Infection Microbiology, 2019, 9: 413

[19]

Horn V, Zarnovican P, Tiemann B, Pich A, Bakker H, Routier FH. N-glycoproteomics of the Apicomplexan parasite Toxoplasma gondii. Proteomics, 2025, 25(8): e202400239

[20]

Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature Reviews Microbiology, 2012, 10(11766-778

[21]

Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Therapy, 2024, 31(128-42

[22]

Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. International Journal of Molecular Sciences, 2020

[23]

Li M, Sun X, Zhao J, Xia L, Li J, Xu M, Wang B, Guo H, Yu C, Gao Y, et al.. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cellular and Molecular Immunology, 2020, 17(7): 753-764

[24]

Li, C.H., Zhang, X.H., Sang, X.Y., He, Y.H., Saeed, E.A., Ding, Y.Y., Jiang, T.T., Yang, N. 2023. Toxoplasma gondii adhesion and apoptosis of chicken erythrocytes. Animal Diseases. 3, 28 (2023). https://doi.org/10.1186/s44149-023-00093-9

[25]

Liu N, Li J, Gao K, Perszyk RE, Zhang J, Wang J, Wu Y, Jenkins A, Yuan H, Traynelis SF, et al.. De novo CLPTM1 variants with reduced GABA(A) R current response in patients with epilepsy. Epilepsia, 2023, 64(11): 2968-2981

[26]

Montoya JG, Liesenfeld O. Toxoplasmosis. The Lancet, 2004, 363(9425): 1965-1976

[27]

Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, El Bissati K, Mui E, Fraczek L, Rajagopala SV, et al.. Toxoplasma modulates signature pathways of human epilepsy, neurodegeneration & cancer. Scientific Reports, 2017, 7(1): 11496

[28]

Niedelman W, Gold DA, Rosowski EE, Sprokholt JK, Lim D, Farid Arenas A, Melo MB, Spooner E, Yaffe MB, Saeij JP. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS Pathogens, 2012, 8(6e1002784

[29]

Orchanian SB, Lodoen MB. Monocytes as primary defenders against Toxoplasma gondii infection. Trends in Parasitology, 2023, 39(10837-849

[30]

Pathak GA, Zhou Z, Silzer TK, Barber RC, Phillips NR. Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. Alzheimer's & Dementia, 2020, 16(1): 162-177

[31]

Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KD, Saeij JP. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. Journal of Experimental Medicine, 2011, 208(1): 195-212

[32]

Sangaré LO, Yang N, Konstantinou EK, Lu D, Mukhopadhyay D, Young LH, Saeij JPJ. Toxoplasma GRA15 activates the NF-κB pathway through interactions with TNF receptor-associated factors. Mbio, 2019

[33]

Scheller C, Krebs F, Wiesner R, Wätzig H, Oltmann-Norden I. A comparative study of CE-SDS, SDS-PAGE, and simple western-precision, repeatability, and apparent molecular mass shifts by glycosylation. Electrophoresis, 2021, 42(14–15): 1521-1531

[34]

Seo SH, Lee JE, Ham DW, Shin EH. Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes. Parasites & Hosts Dis., 2024, 62(1): 30-41

[35]

Shapira S, Harb OS, Caamano J, Hunter CA. The NF-kappaB signaling pathway: Immune evasion and immunoregulation during toxoplasmosis. International Journal for Parasitology, 2004, 34(3): 393-400

[36]

Shen B, Brown KM, Lee TD, Sibley LD. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. Mbio, 2014, 5(3): e01114-e1214

[37]

Shen B, Brown K, Long S, Sibley LD. Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii. Methods in Molecular Biology, 2017, 1498: 79-103

[38]

Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: Structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. International Journal for Parasitology, 2001, 31(12): 1293-1302

[39]

Tomita T, Mukhopadhyay D, Han B, Yakubu R, Tu V, Mayoral J, Sugi T, Ma Y, Saeij JPJ, Weiss LM. Toxoplasma gondii matrix antigen 1 is a secreted immunomodulatory effector. Mbio, 2021

[40]

Varghese F, Bukhari AB, Malhotra R, De A. IHC profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE, 2014, 9(5): e96801

[41]

Weiss LM, Dubey JP. Toxoplasmosis: A history of clinical observations. International Journal for Parasitology, 2009, 39(8895-901

[42]

Wiedemann GM, Röhrle N, Makeschin MC, Fesseler J, Endres S, Mayr D, Anz D. Peritumoural CCL1 and CCL22 expressing cells in hepatocellular carcinomas shape the tumor immune infiltrate. Pathology, 2019, 51(6): 586-592

[43]

Young J, Dominicus C, Wagener J, Butterworth S, Ye X, Kelly G, Ordan M, Saunders B, Instrell R, Howell M, et al.. A CRISPR platform for targeted in vivo screens identifies Toxoplasma gondii virulence factors in mice. Nature Communications, 2019, 10(1): 3963

[44]

Zhao Y, Marple AH, Ferguson DJ, Bzik DJ, Yap GS. Avirulent strains of Toxoplasma gondii infect macrophages by active invasion from the phagosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(176437-6442

[45]

Zhou LJ, Chen M, Puthiyakunnon S, He C, Xia J, He CY, Deng SQ, Peng HJ. Toxoplasma gondii ROP18 inhibits human glioblastoma apoptosis through a mitochondrial pathway by targeting host cell P2X1. Parasites & Vectors, 2019, 12(1): 284

[46]

Zhu YT, Yang XH, Chen MR, Hu Y, Chang YF, Wu X. Research progress on the association between Schizophrenia and Toxoplasma gondii infection. Biomedical and Environmental Sciences, 2024, 37(6647-660

RIGHTS & PERMISSIONS

The Author(s)

PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

/