Maternal and lactogenic immunity in gestating sows induced by adenoviruses expressing mucosal immunogens derived from porcine epidemic diarrhea virus

Namphueng Butkhot , Thotsapol Kaewchomphunuch , Pimploy Rattanaamnuaychai , Kanokporn Polyiam , Panida Chanapiwat , Natharin Ngamwongsatit , Yaowaluck Maprang Roshorm , Kampon Kaeoket

Animal Diseases ›› 2025, Vol. 5 ›› Issue (1)

PDF
Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) DOI: 10.1186/s44149-025-00185-8
Original Article
research-article

Maternal and lactogenic immunity in gestating sows induced by adenoviruses expressing mucosal immunogens derived from porcine epidemic diarrhea virus

Author information +
History +
PDF

Abstract

Porcine epidemic diarrhea virus (PEDV) is a significant pathogen that causes severe diarrhea and high mortality rates in piglets. Thus, maternal and lactogenic immunity is a key success in protecting piglets from PEDV. Here, we developed four recombinant adenovirus (rAd)-based vaccine candidates against PEDV harboring novel immunogens fused with mucosal adjuvants and evaluated their capacity to elicit maternal and lactogenic immunity in gestating sows. The rAd-based vaccines were developed on the basis of the new immunogen PEDVSME (rAd. PEDVSME) and its derivatives fused with three mucosal adjuvants: bacterial outer membrane protein H (OmpH), cholera toxin B subunit (CTB), and GM-CSF/IL-4 fusion protein (GI). In a randomized controlled trial, a total of 50 pregnant sows (n = 10/group) received a prime-boost vaccination regimen of rAd. PEDVSME, rAd. PEDVSME-OmpH, rAd. PEDVSME-CTB, rAd. PEDVSME-GI and PBS were used as controls. After the second dose, the rAd. PEDVSME-CTB induced the highest PEDV-specific IgG response with the highest PEDV-neutralizing titer in pregnant sows, whereas rAd. PEDVSME-OmpH elicited the greatest level of systemic PEDV-specific IgA responses. For the transfer of maternal PEDV-specific antibodies into colostrum, all three rAd-based vaccines expressing adjuvanted immunogens (PEDVSME-OmpH, PEDVSME-CTB, PEDVSME-GI) were superior to the rAd expressing the original immunogen PEDVSME and the PBS control. Interestingly, IgG was the dominant isotype in colostrum, and correlated more strongly with neutralizing activity than IgA. In offspring, newborn piglets from all four groups of sows receiving rAd-based vaccines had antibodies with neutralizing titers higher than those from the control group. During the weaning period, decreases in neutralizing titers were observed in all groups, except for piglets from the rAd group. PEDVSME-OmpH group, whose neutralizing titers were well maintained and significantly greater than those in the control group (P<0.05). These findings demonstrate that the rAd-based vaccines expressing the PEDVSME immunogen fused with the mucosal adjuvant OmpH (rAd. PEDVSME-OmpH) are primary candidates for further evaluation viral challenge in piglets to determine their protective efficacy via passively lactogenic immunity.

Keywords

Lactogenic immunity / Mucosal adjuvant / Neutralizing antibody / PEDV / Recombinant adenovirus vaccine

Cite this article

Download citation ▾
Namphueng Butkhot, Thotsapol Kaewchomphunuch, Pimploy Rattanaamnuaychai, Kanokporn Polyiam, Panida Chanapiwat, Natharin Ngamwongsatit, Yaowaluck Maprang Roshorm, Kampon Kaeoket. Maternal and lactogenic immunity in gestating sows induced by adenoviruses expressing mucosal immunogens derived from porcine epidemic diarrhea virus. Animal Diseases, 2025, 5(1): DOI:10.1186/s44149-025-00185-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bailey, B.A., Desai, K.G.H., Ochyl, L.J., Ciotti, S.M., Moon, J.J., and Schwendeman, S.P. 2017. Self-encapsulating poly (lactic-co-glycolic acid) (PLGA) microspheres for intranasal vaccine delivery. Molecular Pharmaceutics 14: 3228–3237. https://doi.org/10.1021/acs.molpharmaceut.7b00586.

[2]

Bernstein, Z.J., Shenoy, A., Chen, A., Heller, N.M., and Spangler, J.B. 2023. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunological Reviews 320: 29–57. https://doi.org/10.1111/imr.13230.

[3]

Cadenas-Fernández, E., Sánchez-Vizcaíno, J.M., Kosowska, A., Rivera, B., Mayoral-Alegre, F., Rodríguez-Bertos, A., Yao, J., Bray, J., Lokhandwala, S., Mwangi, W., et al. 2020. Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent arm07 isolate in Eurasian Wild Boar. Pathogens 9. https://doi.org/10.3390/pathogens9030171.

[4]

Cao, L., Ge, X., Gao, Y., Zarlenga, D.S., Wang, K., Li, X., Qin, Z., Yin, X., Liu, J., Ren, X., and Li, G. 2015. Putative phage-display epitopes of the porcine epidemic diarrhea virus S1 protein and their anti-viral activity. Virus Genes 51: 217–224. https://doi.org/10.1007/s11262-015-1234-5.

[5]

ChangS-H, BaeJ-L, KangT-J, KimJ, ChungG-H, LimC-W, LaudeH, YangM-S, JangY-S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecules and Cells, 2002, 14: 295-299

[6]

Chang, C.Y., Cheng, I.C., Chang, Y.C., Tsai, P.S., Lai, S.Y., Huang, Y.L., Jeng, C.R., Pang, V.F., and Chang, H.W. 2019. Identification of neutralizing monoclonal antibodies targeting novel conformational epitopes of the porcine epidemic diarrhea virus spike protein. Scientific Reports 9. https://doi.org/10.1038/s41598-019-39844-5.

[7]

Cheun-Arom, T., Temeeyasen, G., Srijangwad, A., Tripipat, T., Sangmalee, S., Vui, D.T., Chuanasa, T., Tantituvanont, A., and Nilubol, D. 2015. Complete genome sequences of two genetically distinct variants of porcine epidemic diarrhea virus in the eastern region of Thailand. Genome Announcements 3. https://doi.org/10.1128/genomeA.00634-15.

[8]

Conti, L., and Gessani, S. 2008. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: Recent advances. Immunobiology 213: 859–870. https://doi.org/10.1016/j.imbio.2008.07.017.

[9]

Cruz, D.J.M., Kim, C.J., and Shin, H.J. 2006. Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes. Virology 354: 28–34. https://doi.org/10.1016/j.virol.2006.04.027.

[10]

Do, V.T., Jang, J., Park, J., Dao, H.T., Kim, K., and Hahn, T.W. 2020. Recombinant adenovirus carrying a core neutralizing epitope of porcine epidemic diarrhea virus and heat-labile enterotoxin B of Escherichia coli as a mucosal vaccine. Archives of Virology 165: 609–618. https://doi.org/10.1007/s00705-019-04492-7.

[11]

Fairfax, K.C., Everts, B., Amiel, E., Smith, A.M., Schramm, G., Haas, H., Randolph, G.J., Taylor, J.J., and Pearce, E.J. 2015. IL-4-Secreting secondary Tfh cells arise from memory T cells, not persisting Tfh cells, through a B-cell dependent mechanism. The Journal of Immunology 194: 2999–3010. https://doi.org/10.4049/jimmunol.1401225.

[12]

Feng, B., Li, C., Qiu, Y., Qi, W., Qiu, M., Li, J., Lin, H., Zheng, W., Zhu, J., and Chen, N. 2023. Genomic characterizations of porcine epidemic diarrhea viruses (PEDV) in diarrheic piglets and clinically healthy adult pigs from 2019 to 2022 in China. Animals 13. https://doi.org/10.3390/ani13091562.

[13]

Fu, F., Li, L., Shan, L., Yang, B., Shi, H., Zhang, J., Wang, H., Feng, L., and Liu, P. 2017. A spike-specific whole-porcine antibody isolated from a porcine B-cell that neutralizes both genogroup 1 and 2 PEDV strains. Veterinary Microbiology 205: 99–105. https://doi.org/10.1016/j.vetmic.2017.05.013.

[14]

Gebre, M.S., Brito, L.A., Tostanoski, L.H., Edwards, D.K., Carfi, A., and Barouch, D.H. 2021. Novel approaches for vaccine development. Cell 184: 1589–1603. https://doi.org/10.1016/j.cell.2021.02.030.

[15]

Geisbert, T.W., Bailey, M., Hensley, L., Asiedu, C., Geisbert, J., Stanley, D., Honko, A., Johnson, J., Mulangu, S., Pau, M.G., et al. 2011. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. Journal of Virology 85: 4222–4233. https://doi.org/10.1128/jvi.02407-10.

[16]

Grassl, G.A., Bohn, E., M¸ller, Y., B¸hler, O.T., and Autenrieth, I.B. 2003. Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion. International Journal of Medical Microbiology 293: 41–54.

[17]

Guo, J., Fang, L., Ye, X., Chen, J., Xu, S., Zhu, X., Miao, Y., Wang, D., and Xiao, S. 2019. Evolutionary and genotypic analyses of global porcine epidemic diarrhea virus strains. Transboundary and Emerging Diseases 66: 111–118. https://doi.org/10.1111/tbed.12991.

[18]

Hanke, D., Jenckel, M., Petrov, A., Ritzmann, M., Stadler, J., Akimkin, V., Blome, S., Pohlmann, A., Schirrmeier, H., Beer, M., and H Ö Per, D. 2015. Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014. Emerging Infectious Diseases 21: 493–496. https://doi.org/10.3201/eid2103.141165.

[19]

He, X., Yang, J., Ji, M., Chen, Y., Chen, Y., Li, H., and Wang, H. 2022. A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. Journal of Controlled Release 343: 551–563. https://doi.org/10.1016/j.jconrel.2022.01.050.

[20]

Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., and Amonsin, A. 2016. Porcine deltacoronavirus, thailand, 2015. Emerging Infectious Diseases 22: 757–759. https://doi.org/10.3201/eid2204.151852.

[21]

Jang, G., Lee, D., Shin, S., Lim, J., Won, H., Eo, Y., Kim, C.H., and Lee, C. 2023. Porcine epidemic diarrhea virus: an update overview of virus epidemiology, vaccines, and control strategies in South Korea. Journal of Veterinary Science 24. https://doi.org/10.4142/jvs.23090.

[22]

Jermsutjarit, P., Mebumroong, S., Watcharavongtip, P., Lin, H., Tantituvanont, A., Kaeoket, K., Piñeyro, P., and Nilubol, D. 2024. Evolution and virulence of porcine epidemic diarrhea virus following in vitro and in vivo propagation. Scientific Reports 14. https://doi.org/10.1038/s41598-024-62875-6.

[23]

Jung, K., Saif, L.J., and Wang, Q. 2020. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Research 286. https://doi.org/10.1016/j.virusres.2020.198045.

[24]

Kamen, A., and Henry, O. 2004. Development and optimization of an adenovirus production process. Journal of Gene Medicine 6: S184–S192. https://doi.org/10.1002/jgm.503.

[25]

Kim, S.H., Jung, D.I., Yang, I.Y., Kim, J., Lee, K.Y., Nochi, T., Kiyono, H., and Jang, Y.S. 2011. M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. European Journal of Immunology 41: 3219–3229. https://doi.org/10.1002/eji.201141592.

[26]

KocherhansR, BridgenA, AckermannM, ToblerK. Completion of the porcine epidemic diarrhea coronavirus (PEDV) genome sequence. Virus Genes, 2001, 23: 137-144

[27]

Krishna, V.D., Kim, Y., Yang, M., Vannucci, F., Molitor, T., Torremorell, M., and Cheeran, M.C.J. 2020. Immune responses to porcine epidemic diarrhea virus (PEDV) in swine and protection against subsequent infection. PLoS ONE 15. https://doi.org/10.1371/journal.pone.0231723.

[28]

Van De Laar, L., Coffer, P.J., and Woltman, A.M. 2012. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119: 3383–2293. https://doi.org/10.1182/blood-2011-11-370130.

[29]

Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., and Saif, L.J. 2016. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Research 226: 93–107. https://doi.org/10.1016/j.virusres.2016.05.016.

[30]

Lee, C. 2015. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virology Journal 12: 1–16. https://doi.org/10.1186/s12985-015-0421-2.

[31]

Li, Q., Peng, O., Wu, T., Xu, Z., Huang, L., Zhang, Y., Xue, C., Wen, Z., Zhou, Q., and Cao, Y. 2018. PED subunit vaccine based on COE domain replacement of flagellin domain D3 improved specific humoral and mucosal immunity in mice. Vaccine 36: 1381–1388. https://doi.org/10.1016/j.vaccine.2018.01.086.

[32]

Li, Z., Ma, Z., Li, Y., Gao, S., and Xiao, S. 2020. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microbial Pathogenesis 149. https://doi.org/10.1016/j.micpath.2020.104553.

[33]

Li, F., Wang, X., Fan, X., Sui, L., Zhang, H., Li, Y., Zhou, H., Wang, L., Qiao, X., Tang, L., and Li, Y. 2023. 2021, Immunogenicity of recombinant-deficient Lactobacillus casei with complementary plasmid expressing alanine racemase gene and core neutralizing epitope antigen against porcine epidemic diarrhea virus vaccines, 9, (1084), https://doi.org/10.3390/vaccines11020388.

[34]

Liao, S., Chen, Y., Yang, Y., Wang, G., Wang, Q., Liu, J., Wu, H., Luo, Q., and Chen, Y. 2023. Detection of RNA-dependent RNA polymerase of porcine epidemic diarrhea virus. Journal of Immunological Methods 515. https://doi.org/10.1016/j.jim.2023.113442.

[35]

Lin, C.M., Saif, L.J., Marthaler, D., and Wang, Q. 2016. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Research 226: 20–39. https://doi.org/10.1016/j.virusres.2016.05.023.

[36]

Lin, C.M., Ghimire, S., Hou, Y., Boley, P., Langel, S.N., Vlasova, A.N., Saif, L.J., and Wang, Q. 2019. Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Veterinary Research 15. https://doi.org/10.1186/s12917-018-1756-x.

[37]

Lin, F., Zhang, H., Li, L., Yang, Y., Zou, X., Chen, J., and Tang, X. 2022. PEDV: Insights and advances into types, function, structure, and receptor recognition. Viruses 14. https://doi.org/10.3390/v14081744.

[38]

Liu, X., Zhao, D., Zhou, P., Zhang, Y., and Wang, Y. 2019. Evaluation of the efficacy of a recombinant adenovirus expressing the spike protein of porcine epidemic diarrhea virus in pigs. BioMed Research International 2019. https://doi.org/10.1155/2019/8530273.

[39]

Lokhandwala, S., Petrovan, V., Popescu, L., Sangewar, N., Elijah, C., Stoian, A., Olcha, M., Ennen, L., Bray, J., Bishop, R.P., et al. 2019. Adenovirus-vectored african swine fever virus antigen cocktails are immunogenic but not protective against intranasal challenge with the Georgia 2007/1 isolate. Veterinary Microbiology 235: 10–20. https://doi.org/10.1016/j.vetmic.2019.06.006.

[40]

Ma, S., Wang, L., Huang, X., Wang, X., Chen, S., Shi, W., Qiao, X., Jiang, Y., Tang, L., Xu, Y., and Li, Y. 2018. Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microbial Cell Factories 17. https://doi.org/10.1186/s12934-018-0861-7.

[41]

Madson, D.M., Magstadt, D.R., Arruda, P.H.E., Hoang, H., Sun, D., Bower, L.P., Bhandari, M., Burrough, E.R., Gauger, P.C., Pillatzki, A.E., et al. 2014. Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Veterinary Microbiology 174: 60–68. https://doi.org/10.1016/j.vetmic.2014.09.002.

[42]

Meas, S., Chaimongkolnukul, K., Narkpuk, J., Mekvichitsaeng, P., Poomputsa, K., Wanasen, N., and Roshorm, Y.M. 2024. Humoral and cellular immune responses induced by bivalent DNA vaccines expressing fusion capsid proteins of porcine circovirus genotypes 2a and 2b. Vaccines 12. https://doi.org/10.3390/vaccines12030324.

[43]

Murtaza, A., Hoa, N.T., Dieu-Huong, D., Afzal, H., Tariq, M.H., Cheng, L.T., and Chung, Y.C. 2024. Advancing PEDV vaccination: Comparison between inactivated and flagellin N-terminus-adjuvanted subunit vaccines. Vaccines 12. https://doi.org/10.3390/vaccines12020139.

[44]

NelmsK, KeeganAD, ZamoranoJ, RyanJJ, PaulWE. THE IL-4 RECEPTOR: Signaling mechanisms and biologic functions. Annual Review of Immunology, 1999, 17: 701-739

[45]

PachecoSE, GibbsRA, Ansari-LariA, RogersP. Intranasal immunization with HIV reverse transcriptase: Effect of dose in the induction of helper T-cell type 1 and 2 immunity. AIDS Research and Human Retroviruses, 2000, 16: 2009-2017

[46]

Polyiam, K., Ruengjitchatchawalya, M., Mekvichitsaeng, P., Kaeoket, K., Hoonsuwan, T., Joiphaeng, P., and Roshorm, Y.M. 2022. Immunodominant and neutralizing linear B-cell epitopes spanning the spike and membrane proteins of porcine epidemic diarrhea virus. Frontiers in Immunology 12. https://doi.org/10.3389/fimmu.2021.785293.

[47]

Rios, D., Wood, M.B., Li, J., Chassaing, B., Gewirtz, A.T., and Williams, I.R. 2016. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunology 9: 907–916. https://doi.org/10.1038/mi.2015.121.

[48]

Salmon, H., Berri, M., Gerdts, V., and Meurens, F. 2009. Humoral and cellular factors of maternal immunity in swine. Developmental and Comparative Immunology 33: 384–393. https://doi.org/10.1016/j.dci.2008.07.007.

[49]

Sato, S., and Pascual, D.W. 2020. M Cell-Targeted Vaccines. Pages 487–498 in H. Kiyono and D.W. Pascual, eds. Mucosal vaccines: Innovation for preventing infectious diseases, 2nd edition. Academic Press. https://doi.org/10.1016/B978-0-12-811924-2.00028-6.

[50]

Senthilkumaran, C., Kroeker, A.L., Smith, G., Embury-Hyatt, C., Collignon, B., Ramirez-Medina, E., Azzinaro, P.A., Pickering, B.S., Diaz-San Segundo, F., Weingartl, H.M., et al. 2022. Treatment with Ad5-porcine interferon-α attenuates ebolavirus disease in pigs. Pathogens 11. https://doi.org/10.3390/pathogens11040449.

[51]

Song, D., and Park, B. 2012. Porcine epidemic diarrhea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44: 167–175. https://doi.org/10.1007/s11262-012-0713-1.

[52]

Song, X., Qian, J., Wang, C., Wang, D., Zhou, J., Zhao, Y., Wang, W., Li, J., Guo, R., Li, Y., et al. 2023. Correlation between the IgG/IgA antibody response to the PEDV structural protein and virus neutralization. Microbiology Spectrum 11. https://doi.org/10.1128/spectrum.05233-22.

[53]

Song, X., Zhou, Q., Zhang, J., Chen, T., Deng, G., Yue, H., Tang, C., Wu, X., Yu, J., and Zhang, B. 2024. Immunogenicity and protective efficacy of a recombinant adenovirus expressing a novel genotype, the G2b PEDV spike protein, in protecting newborn piglets against PEDV. Microbiology Spectrum 12. https://doi.org/10.1128/spectrum.02403-23.

[54]

Stott, C.J., Temeeyasen, G., Tripipat, T., Kaewprommal, P., Tantituvanont, A., Piriyapongsa, J., and Nilubol, D. 2017. Evolutionary and epidemiological analyses based on spike genes of porcine epidemic diarrhea virus circulating in Thailand in 2008–2015. Infection, Genetics and Evolution 50: 70–76. https://doi.org/10.1016/j.meegid.2017.02.014.

[55]

Su, M., Yin, B., Xing, X., Li, Z., Zhang, J., Feng, S., Li, L., Zhao, F., Yang, X., Yu, S., et al. 2023a. Octyl gallate, which targets the 3C-like protease, exhibits highly efficient antiviral activity against the swine enteric coronavirus PEDV. Veterinary Microbiology 281. https://doi.org/10.1016/j.vetmic.2023.109743.

[56]

Su, M., Zheng, G., Xu, X., and Song, H. 2023b. Antigen epitopes of animal coronaviruses: a mini-review. Animal Diseases 3. https://doi.org/10.1186/s44149-023-00080-0.

[57]

Sun, D., Feng, L., Shi, H., Chen, J., Cui, X., Chen, H., Liu, S., Tong, Y., Wang, Y., and Tong, G. 2008. Identification of two novel B-cell epitopes on porcine epidemic diarrhea virus spike protein. Veterinary Microbiology 131: 73–81. https://doi.org/10.1016/j.vetmic.2008.02.022.

[58]

Symowski, C., and Voehringer, D. 2019. Th2 cell-derived IL-4/IL-13 promote ILC2 accumulation in the lung by ILC2-intrinsic STAT6 signaling in mice. European Journal of Immunology 49: 1421–1432. https://doi.org/10.1002/eji.201948161.

[59]

Temeeyasen, G., Srijangwad, A., Tripipat, T., Tipsombatboon, P., Piriyapongsa, J., Phoolcharoen, W., Chuanasa, T., Tantituvanont, A., and Nilubol, D. 2014. Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand. Infection, Genetics and Evolution 21: 205–213. https://doi.org/10.1016/j.meegid.2013.11.001.

[60]

Torres, J.M., Alonso, C., Ortega, A., Mittal, S., Graham, F., and Enjuanes, L. 1996. Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus. Journal of Virology 70: 3770–3780. https://doi.org/10.1128/JVI.70.6.3770-3780.1996.

[61]

Vazquez, M.I., Catalan-Dibene, J., and Zlotnik, A. 2015. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 74: 318–326. https://doi.org/10.1016/j.cyto.2015.02.007.

[62]

Vorburger, S.A., and Hunt, K.K. 2002. Adenoviral gene therapy. The Oncologist 7: 46–59. https://doi.org/10.1634/theoncologist.7-1-46.

[63]

Walhout, A.J.M., Temple, G.F., Brasch, M.A., Hartley, J.L., Lorson, M.A., Van Den Heuvel, S., and Vidal, M. 2000. GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Pages 575–592 in J. Thorner, S.D. Emr, and J.N. Abelson, eds. Methods in Enzymology. Academic Press Inc., New York, NY. https://doi.org/10.1016/s0076-6879(00)28419-x.

[64]

Wang, M., Bregenholt, S., and Petersen, J.S. 2003. The cholera toxin B subunit directly costimulates antigen-primed CD4 + T cells ex xivo. Scandinavian Journal of Immunology 58: 342–349. https://doi.org/10.1046/j.1365-3083.2003.01308.x.

[65]

Wang, H., Zhang, L., Shang, Y., Tan, R., Ji, M., Yue, X., Wang, N., Liu, J., Wang, C., Li, Y., and Zhou, T. 2020. Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evolution 6. https://doi.org/10.1093/ve/veaa049.

[66]

Wang, S., Liang, B., Wang, W., Li, L., Feng, N., Zhao, Y., Wang, T., Yan, F., Yang, S., and Xia, X. 2023. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduction and Targeted Therapy 8. https://doi.org/10.1038/s41392-023-01408-5

[67]

Wei, H., and Wang, J.Y. 2021. Role of polymeric immunoglobulin receptor in IgA and IgM transcytosis. International Journal of Molecular Sciences 22: 1–20. https://doi.org/10.3390/ijms22052284.

[68]

Xie, C., Ha, Z., Sun, W., Nan, F., Zhang, P., Han, J., Zhao, G., Zhang, H., Zhuang, X., Lu, H., and Jin, N. 2019. Construction and immunological evaluation of recombinant adenovirus vaccines coexpressing gp3 and gp5 of eu-type porcine reproductive and respiratory syndrome virus in pigs. Journal of Veterinary Medical Science 81: 1879–1886. https://doi.org/10.1292/jvms.19-0283.

[69]

Zhang, Z., Luo, Y., Zhang, Y., and Guo, K. 2019. Enhanced protective immune response to PCV2 adenovirus vaccine by fusion expression of Cap protein with InvC in pigs. Journal of Veterinary Science 20. https://doi.org/10.4142/jvs.2019.20.e35.

[70]

Zhang, Y., Chen, Y., Zhou, J., Wang, X., Ma, L., Li, J., Yang, L., Yuan, H., Pang, D., and Ouyang, H. 2022. Porcine epidemic diarrhea virus: An updated overview of virus epidemiology, virulence variation patterns and virus–host interactions. Viruses 14. https://doi.org/10.3390/v14112434.

[71]

Zhao, Y., Fan, B., Song, X., Gao, J., Guo, R., Yi, C., He, Z., Hu, H., Jiang, J., Zhao, L., Zhong, T., and Li, B. 2024. PEDV-spike-protein-expressing mRNA vaccine protects piglets against PEDV challenge. mBio 15. https://doi.org/10.1128/mbio.02958-23.

Funding

Ministry of Higher Education, Science, Research and Innovation, Thailand(project number 64A306000043)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/