Evaluation of the genetic profiles of Brucella with different biotypes using MLVA and MLST techniques

Chaoyue Guo , Xiaojie Zhu , Yaqin Zhang , Xiaowei Peng , Weifeng Sun , Kaixuan Guo , JIandong Zhang , Xiaoqian Zhang , Junping Li , Zhengfei Liu

Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 24

PDF
Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 24 DOI: 10.1186/s44149-025-00181-y
Original Article
research-article

Evaluation of the genetic profiles of Brucella with different biotypes using MLVA and MLST techniques

Author information +
History +
PDF

Abstract

Brucella, the causative agent of brucellosis, is a globally significant zoonotic pathogen with serious public health implications. Understanding the molecular and genetic characteristics of Brucella species is crucial for the precise prevention, control, and epidemiological traceback investigation of brucellosis. In this study, 82 Brucella strains were genotyped via multiple-locus variable-number tandem-repeat analysis (MLVA-11) and multilocus sequence typing (MLST-21). Among these strains, four species and 14 biotypes were identified. MLVA-11 analysis revealed that 82 strains of bacteria contained 25 MLVA-11 genotypes, with genotype 72 (N = 10) and genotype 116 (N = 10) being the dominant genotypes. Hunter & Gaston diversity index (HGDI) analysis was conducted on the repeat results of 11 VNTR loci across all strains. These 11 VNTR loci exhibited varying degrees of polymorphism, with four loci demonstrating high levels of polymorphism. Notably, the 18 loci presented the highest degree of polymorphism, with a polymorphism index reaching 0.712. MLST-21 analysis revealed that 82 strains of Brucella contained 16 genotypes, with ST-8 (N = 33) being the dominant genotype. This study elucidates the phylogenetic relationships among diverse Brucella species. A comparison of the clustering results for 82 Brucella strains obtained via the two methods revealed that the MLVA-11 typing results more reliably encompassed the typing information provided by MLST-21. These findings provide novel insights into the molecular epidemiology of Brucella, which may facilitate the development of more effective strategies for brucellosis prevention and control.

Keywords

Brucella / Molecular identification / MLVA-11 / MLST-21 / Genotype

Cite this article

Download citation ▾
Chaoyue Guo, Xiaojie Zhu, Yaqin Zhang, Xiaowei Peng, Weifeng Sun, Kaixuan Guo, JIandong Zhang, Xiaoqian Zhang, Junping Li, Zhengfei Liu. Evaluation of the genetic profiles of Brucella with different biotypes using MLVA and MLST techniques. Animal Diseases, 2025, 5(1): 24 DOI:10.1186/s44149-025-00181-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-GlilMY, ThomasP, BrandtC, MelzerF, SubbaiyanA, ChaudhuriP, HarmsenD, JolleyKA, JanowiczA, GarofoloG, NeubauerH, PletzMW. Core genome multilocus sequence typing scheme for improved characterization and epidemiological surveillance of pathogenic Brucella. J Clin Microbiol, 2022, 608. e0031122

[2]

AkarK, ErganisO. Evaluation of the genetic profiles of Brucella melitensis strain from Turkey using multilocus variable number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) techniques. Vet Microbiol, 2022, 269. 109423

[3]

Alamian S, Amiry K, Etemadi A, Dadar M., 2024. Characterization of Brucella spp. circulating in industrial dairy cattle farms in Iran: a field study 2016 - 2023. Vet Res Forum, 15 (4): 195–202. https://doi.org/10.30466/vrf.2024.2012972.4028.

[4]

AliS, MushtaqA, HassanL, SyedMA, FosterJT, DadarM. Molecular epidemiology of brucellosis in Asia: Insights from genotyping analyses. Vet Res Commun, 2024, 48(6): 3533-3550.

[5]

AnbazhaganS, HimaniKM, KarthikeyanR, PrakasanL, DineshM, NairSS, LalsiamtharaJ, AbhishekRamachandra S G, ChaturvediVK, ChaudhuriP, ThomasP. Comparative genomics of Brucella abortus and Brucella melitensis unravels the gene sharing, virulence factors and SNP diversity among the standard, vaccine and field strains. Int Microbiol, 2024, 27(1): 101-111.

[6]

AndrewsN, McCabeE, WallP, BuckleyJF, FanningS. Validating the utility of multilocus variable number tandem-repeat analysis (MLVA) as a subtyping strategy to monitor Listeria monocytogenes In-built food processing environments. J Food Prot, 2023, 8610. 100147

[7]

AwaisMM, KhadimG, AkhtarM, AnwarMI, ShirwanyA, RazaA, RazzaqA, FatimaZ, AliMA, BhattiMS. A study on the epidemiology of brucellosis in bovine population of peri-urban and rural areas of district Multan, southern Punjab. Pakistan. BMC Vet Res, 2024, 20139.

[8]

Ayoub H, Kumar M S, Mehta R, Sethuraj S E, Thomas P, Dhanze H, Dubey M, Salih H M, Chandrashekaraiah G B, Cull C A, Veeranna R P, Amachawadi R G., 2025. Genomic insights into Brucella melitensis in India: stability of ST8 and the role of virulence genes in regional adaptations. Microbiol Spectr, e0264724. https://doi.org/10.1128/spectrum.02647-24.

[9]

BrangschH, SinghaH, LaroucauK, ElschnerM. Sequence-based detection and typing procedures for Burkholderia mallei: Assessment and prospects. Front Vet Sci, 2022, 91056996.

[10]

BrangschH, HorstkotteMA, MelzerF. Genotypic peculiarities of a human brucellosis case caused by Brucella suis biovar 5. Sci Rep, 2023, 13116586.

[11]

CaoX, LiuP, WuJ, LiuZ, ZhangY, YinC, YingL, MaJ, HeJ, ShangY, DuR, LiuZ, LiZ. Genome phylogenetic analysis of Brucella melitensis in Northwest China. BMC Microbiol, 2025, 251208.

[12]

CarriçoJA, Silva-CostaC, Melo-CristinoJ, PintoFR, de LencastreH, AlmeidaJS, RamirezM. Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes. J Clin Microbiol, 2006, 44(7): 2524-2532.

[13]

Chang J, Hou X, Yang X, Zhang SJ, Zou DY, Li F, Zhang Y, Li YS, Lu SY, Hu P, Liu ZS, Ren HL., 2023. A rapid and sensitive triplex-recombinase polymerase amplification for simultaneous differentiation of Brucella abortus, Brucella melitensis, and Brucella suis in sera and foods. FEMS Microbiol Lett, 370. https://doi.org/10.1093/femsle/fnad056.

[14]

DadarM, AlamianS. In silico MLVA analysis of Brucella melitensis from human and livestock in Iran. Curr Microbiol, 2025, 82274.

[15]

DaugaliyevaA, DaugaliyevaS, AbutalipA, AdambayevaA, KydyrN, PelettoS. Study of epidemiological and molecular characteristics of Brucella strains circulating in Kazakhstan. Vet Res Commun, 2025, 493156.

[16]

De MassisF, AliRM, SerraniS, ToroM, SferrellaA, D'AurelioN, JanowiczA, ZilliK, RomualdiT, FelicioniE, SalmanMH, FahdelDH, RashidHS, AmeenBQ, GarofoloG. Genetic diversity of Brucella melitensis isolated from domestic ruminants in Iraq. Microorganisms, 2024, 123475.

[17]

DeanAS, CrumpL, GreterH, HattendorfJ, SchellingE, ZinsstagJ. Clinical manifestations of human brucellosis: A systematic review and meta-analysis. PLoS Negl Trop Dis, 2012, 612. e1929

[18]

EyüboğluM. Highlights in the association of fragmented QRS with myocardial fibrosis. Turk J Med Sci, 2022, 52(4): 1411-1412.

[19]

Fang, Y.P., Wang, J.J. Zhang, G.Y. Zhu, F.D. Guo, C.Y. Zhang, J.D. Guo, K.X. Deng, Y. Zhang, J.X. Chen, H.C. and Liu, Z.F. 2023. Enzootic epidemiology of Brucella in livestock in central Gansu Province after the National Brucellosis Prevention and Control Plan. Animal Diseases 3: 13. https://doi.org/10.1186/s44149-022-00077-9.

[20]

GanaJ, GcebeN, PierneefR, MoeraneR, AdesiyunAA. Multiple-locus variable-number tandem repeat analysis genotypes of Listeria monocytogenes isolated from farms, abattoirs, and retail in Gauteng Province. South Africa. J Food Prot, 2022, 85(9): 1249-1257.

[21]

GlowackaP, ZakowskaD, NaylorK, NiemcewiczM, Bielawska-DrózdA. Brucella - virulence factors, pathogenesis and treatment. Pol J Microbiol, 2018, 67(2): 151-161.

[22]

HollowayP, GibsonM, HollowayT, PickettI, CrookB, CardwellJM, NashS, MusallamI, Al-OmariB, Al-MajaliA, HayajnehW, Abu-BashaE, MangtaniP, GuitianJ. Camel milk is a neglected source of brucellosis among rural Arab communities. Nat Commun, 2025, 161861.

[23]

HolzerK, WarethG, El-DiastyM, Abdel-HamidNH, HamdyMER, MoustafaSA, LindeJ, BartuschF, Abdel-GlilMY, SayourAE, ElbauomyEM, ElhadidyM, MelzerF, BeyerW. Tracking the distribution, genetic diversity and lineage of Brucella melitensis recovered from humans and animals in Egypt based on core-genome SNP analysis and in silico MLVA-16. Transbound Emerg Dis, 2022, 69(6): 3952-3963.

[24]

HouQ, SunX, ZhangJ, LiuY, WangY, JinZ. Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region. China. Math Biosci, 2013, 242(1): 51-58.

[25]

KongN, LuoY, LiuJ, YaoG, HuY, ShuS, LiC, BiS. Subtyping of Campylobacter coli isolated from raw poultry meat in retail markets using amplified intergenic locus polymorphism - A novel rapid subtyping method. J Microbiol Meth, 2023, 204. 106662

[26]

KsibiB, SmaouiF, Ben AyedN, GuetatM, MezghaniS, KtariS, MahjoubiF, Ben JemaaM, KarrayH, HammamiA. Genomic analysis of Brucella melitensis isolates recovered from humans in south Tunisia over 35 years between 1988 and 2022. BMC Microbiol, 2025, 25198.

[27]

KurmanovB, ZinckeD, SuW, HadfieldTL, AikimbayevA, KaribayevT, BerdikulovM, OrynbayevM, NikolichMP, BlackburnJK. Assays for identification and differentiation of Brucella species: A review. Microorganisms, 2022, 1081584.

[28]

Le FlècheP, JacquesI, GrayonM, Al DahoukS, BouchonP, DenoeudF, NöcklerK, NeubauerH, GuilloteauLA, VergnaudG. Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol, 2006, 69.

[29]

LegougeC, BidetP, Gits-MuselliM, CointeA, CourrouxC, BirgyA, BonacorsiS. Rapid, simple multi-locus variable number tandem repeat analysis: A reliable tool for Klebsiella pneumoniae outbreak screening. J Hosp Infect, 2023, 141: 41-48.

[30]

LiW, ZengL, YuanR, QiT, LiaoH, CaoY, HuangS, LiuZ, LiZ. Genetic diversity atlas of Brucella melitensis strains from Sichuan Province. China. BMC Microbiol, 2025, 25121.

[31]

LiuZG, WangM, ZhaoHY, PiaoDR, JiangH, LiZJ. Investigation of the molecular characteristics of Brucella isolates from Guangxi Province. China. BMC Microbiol, 2019, 191292.

[32]

Macías Luaces L, Boll K, Klose C, Domogalla-Urbansky J, Müller M, Eisenberger D, Riehm J M., 2023. Seroprevalence of Brucella infection in Wild Boars (Sus scrofa) of Bavaria, Germany, 2019 to 2021 and associated genome analysis of five B. Suis biovar 2 isolates. Microorganisms, 11 (2): 478. https://doi.org/10.3390/microorganisms11020478.

[33]

MallappaA, Kuralayanapalya PuttahonnappaS, ShomeR, PatilSS, AmachawadiRG, MohanKSK, VenkateshSP, RameshV, SekarYS, ThippeswamyH, PatilAV. Systematic review, meta-analysis, and pan-genome analytics predict the surging of Brucella melitensis by China and India-specific strains, elucidating the demand for enhanced preparedness. J Infect Public Health, 2025, 184. 102693

[34]

ÖzmenM, ÖzgenEK, SayıO, Karadeniz PütürE, OkumuşB, İba YılmazS, AslanMH, UlucanM, YanmazB, Şeri Foğlu BağatirP, TurutN, KarahanŞ, EroğluB, GülserenY, KüçükayanU, NuhayÇ, EskiIZRLS, SakaE, Soysal SarişahiNA, Deni, Bi RbenN, KarakuşK, ŞenE, SaytekiNA, AkarK. Genotyping of Brucella isolates from animals and humans by multiple-locus variable-number tandem repeat analysis (MLVA). Comp Immunol Microbiol Infect Dis, 2023, 96. 101981

[35]

PereiraCR, NeiaRC, SilvaSB, WilliamsonCHD, GilleceJD, O'CallaghanD, FosterJT, OliveiraIRC, Bueno FilhoJSS, LageAP, AzevedoVAC, DornelesEMS. Comparison of Brucella abortus population structure based on genotyping methods with different levels of resolution. J Microbiol Meth, 2023, 211. 106772

[36]

PijnackerR, van den BeldM, van der ZwaluwK, VerbruggenA, CoipanC, SeguraAH, Mughini-GrasL, FranzE, BoschT. Comparing multiple locus variable-number tandem repeat analyses with whole-genome sequencing as typing method for salmonella enteritidis surveillance in the Netherlands, January 2019 to March 2020. Microbiol Spectr, 2022, 105. e0137522

[37]

Salmani SerajiM, Yazdani CharatiJ, Baba MahmoudiF, Ali Mohammadpour TahamtanR, VahediH, ShojaeiJ. Epidemiology of brucellosis in Mazandaran, North of Iran in a nine-year period (2009–2017). Caspian J Intern Med, 2024, 15(4): 666-672.

[38]

Ta N, Zuo K M, Gao J, Guan N, Song L T, Wen Y J, Yu R P., 2024. Origin tracking of Brucella strain B. melitensics bv.3 ARQ-070 using biochemical and genomic studies. FEMS Microbiol Lett, 371 https://doi.org/10.1093/femsle/fnae085.

[39]

TanQ, WangY, LiuY, TaoZ, YuC, HuangY, YangX, YingX, HuY, LiS. Molecular epidemiological characteristics of Brucella in Guizhou Province, China, from 2009 to 2021. Front Microbiol, 2023, 141188469.

[40]

TianT, ZhuY, ShiJ, ShangK, YinZ, ShiH, HeY, DingJ, ZhangF. The development of a human Brucella mucosal vaccine: What should be considered?. Life Sci, 2024, 355. 122986

[41]

WhatmoreAM, KoylassMS, MuchowskiJ, Edwards-SmallboneJ, GopaulKK, PerrettLL. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella : Phylogeography and relationship to biovars. Front Microbiol, 2016, 72049.

[42]

WuY, YuY, HuaL, WeiY, GanY, CheniaHY, WangY, XieX, WangJ, LiuM, ShaoG, XiongQ, FengZ. Genotyping and biofilm formation of Mycoplasma hyopneumoniae and their association with virulence. Vet Res, 2022, 53195.

[43]

YangX, LiuY, LiN, PengX, ZhangY, ZhangX, LiangL, BianZ, JiangH, DingJ. Analysis of the Brucella melitensis epidemic in Xinjiang: Genotyping, polymorphism, antibiotic resistance and tracing. Ann Clin Microbiol Antimicrob, 2024, 23171.

[44]

YanmazB, ÖzgenEK, SayıO, ErdoğanY, AslanMH, İba YılmazS, Karadeniz PütürE, PolatN, ÖzmenM, Şerifoğlu BağatırP, IldızS. Phylogenetic analysis of Brucella melitensis strains isolated from humans using 16S rRNA sequencing and multiple locus variable number of tandem repeats analysis-16. Vector Borne and Zoonotic Dis, 2024, 24(7): 416-423.

Funding

National Key Research and Development Program of China(2022YFD1800600)

the public welfare key projects in the veterinary drug industry of China Institute of Veterinary Drug Control(QN202403-1)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/