HrcA-mediated transcriptional regulation affects the growth and survival of Streptococcus suis under low-glucose conditions

Ran Liu , Shulin Miao , Kunlong Xia , Yuhua Wang , Long Li , Anding Zhang

Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 17

PDF
Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 17 DOI: 10.1186/s44149-025-00171-0
Original Article

HrcA-mediated transcriptional regulation affects the growth and survival of Streptococcus suis under low-glucose conditions

Author information +
History +
PDF

Abstract

Streptococcus suis (S. suis) is a major zoonotic pathogen whose nasopharyngeal colonization relies on adaptive regulation in response to the host’s low-glucose microenvironment. However, the molecular mechanisms underlying this adaptation remain largely unexplored. In this study, RNA-seq analysis of S. suis cultured under low-glucose (0.2%) conditions revealed 86 DEGs, predominantly associated with the phosphotransferase system, alternative carbon metabolism, and energy homeostasis pathways. A phenotypic screening of eight transcription factor (TF) mutants revealed that deletion of HrcA significantly impaired bacterial growth and survival under low-glucose conditions. ChIP-seq analysis revealed the HrcA-binding motif (GTGCTAATT) and mapped 391 potential target genes, 18 of which were differentially expressed under low-glucose conditions. Further qPCR and electrophoretic mobility shift assays (EMSAs) validated the direct regulation of 10 target genes by HrcA. Specifically, HrcA represses energy-intensive genes (B9H01_00980 and B9H01_04980) to conserve energy while activating B9H01_00995 and B9H01_01125 to promote alternative carbon metabolism and pyruvate fermentation. Additionally, HrcA modulates the expression of the AraC family TF1 and the DeoR family TF4, establishing a hierarchical regulatory network. Notably, HrcA downregulates its own expression under low-glucose conditions to fine-tune carbon metabolism gene regulation and maintain S. suis homeostasis, providing new insights into its adaptive strategies.

Keywords

Streptococcus suis / Transcription factor / Low-glucose / Transcriptional regulation / Biological Sciences / Biochemistry and Cell Biology / Genetics

Cite this article

Download citation ▾
Ran Liu, Shulin Miao, Kunlong Xia, Yuhua Wang, Long Li, Anding Zhang. HrcA-mediated transcriptional regulation affects the growth and survival of Streptococcus suis under low-glucose conditions. Animal Diseases, 2025, 5(1): 17 DOI:10.1186/s44149-025-00171-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaileyTL, JohnsonJ, GrantCE, NobleWS. The MEME suite. Nucleic Acids Research, 2015, 43W1W39-49.

[2]

Van Bokhorst-van de Veen H, Bongers RS, Wels M, Bron PA, Kleerebezem M. Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation. Microb Cell Fact 2013;12:112. https://doi.org/10.1186/1475-2859-12-112. https://doi.org/10.1186/1475-2859-12-112

[3]

BrassardJ, GottschalkM, QuessyS. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Veterinary Microbiology, 2004, 1021–287-94.

[4]

ChastanetA, FertJ, MsadekT. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other gram-positive bacteria. Molecular Microbiology, 2003, 4741061-1073.

[5]

DeTjaden B. novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biology, 2015, 1611.

[6]

Durica-Mitic S, Göpel Y, Görke B. Carbohydrate utilization in bacteria: making the most out of sugars with the help of small regulatory RNAs. Microbiol Spectr 2018;6(2). https://doi.org/10.1128/microbiolspec.RWR-0013-2017. https://doi.org/10.1128/microbiolspec.RWR-0013-2017

[7]

DuruIC, YlinenA, BelanovS, PulidoAA, PaulinL, AuvinenP. Transcriptomic time-series analysis of cold- and heat-shock response in psychrotrophic lactic acid bacteria. BMC Genomics, 2021, 22128.

[8]

Dutkiewicz J, Zając V, Sroka J, Wasiński B, Cisak E, Sawczyn A, Kloc A, Wójcik-Fatla A. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - Pathogenesis. Ann Agric Environ Med 2018;25(1):186–203. https://doi.org/10.26444/aaem/85651.

[9]

FanQ, WangH, YuanS, QuanY, LiR, YiL, JiaA, WangY, WangY. Pyruvate formate lyase regulates fermentation metabolism and virulence of Streptococcus suis. Virulence, 2025, 1612467156.

[10]

FerrandoML, van BaarlenP, OrrùG, PigaR, BongersRS, WelsM, De GreeffA, SmithHE, WellsJM. Carbohydrate availability regulates virulence gene expression in Streptococcus suis. PLoS ONE, 2014, 93. e89334

[11]

FultonDL, SundararajanS, BadisG, HughesTR, WassermanWW, RoachJC, SladekR. TFCat: The curated catalog of mouse and human transcription factors. Genome Biology, 2009, 103R29.

[12]

GaoG, WeiD, LiG, ChenP, WuL, LiuS, ZhangY. highly effective markerless genetic manipulation of Streptococcus suis using a mutated PheS-based counterselectable marker. Frontiers in Microbiology, 2022, 13. 947821

[13]

GaoS, MaoC, YuanS, QuanY, JinW, ShenY, ZhangX, WangY, YiL, WangY. AI-2 quorum sensing-induced galactose metabolism activation in Streptococcus suis enhances capsular polysaccharide-associated virulence. Veterinary Research, 2024, 55180.

[14]

GörkeBStülke J. . Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology, 2008, 68613-624.

[15]

HakiemOR, ParijatP, TripathiP, BatraJK. Mechanism of HrcA function in heat shock regulation in Mycobacterium tuberculosis. Biochimie, 2020, 168: 285-296.

[16]

Langmead BSalzberg SL. 2012 Fast gapped-read alignment with Bowtie 2 Nature Methods 9 4 357 359 https://doi.org/10.1038/nmeth.1923.10.1038/nmeth.1923

[17]

LiangZ, LuJ, BaoY, ChenX, YaoH, WuZ. Glycerol metabolic repressor GlpR contributes to Streptococcus suis oxidative stress resistance and virulence. Microbes and Infection, 2025, 271. 105307

[18]

LiuQ, BodeAM, ChenX, LuoX. Metabolic reprogramming in nasopharyngeal carcinoma: Mechanisms and therapeutic opportunities. Biochimica Et Biophysica Acta Reviews on Cancer, 2023, 18786. 189023

[19]

LoveMI, HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 1512550.

[20]

LunZR, WangQP, ChenXG, LiAX, ZhuXQ. Streptococcus suis: An emerging zoonotic pathogen. The Lancet Infectious Diseases, 2007, 73201-209.

[21]

MinchKJ, RustadTR, PetersonEJ, WinklerJ, ReissDJ, MaS, HickeyM, BrabantW, MorrisonB, TurkarslanS, MawhinneyC, GalaganJE, PriceND, BaligaNS, ShermanDR. The DNA-binding network ofMycobacterium tuberculosis. Nature Communications, 2015, 6: 5829.

[22]

NiuK, MengY, LiuM, MaZ, LinH, ZhouH, FanH. Phosphorylation of GntR reduces Streptococcus suis oxidative stress resistance and virulence by inhibiting NADH oxidase transcription. PLoS Pathogens, 2023, 193. e1011227

[23]

ObradovicMR, SeguraM, SegalésJ, GottschalkM. Review of the speculative role of coinfections in Streptococcus suis-associated diseases in pigs. Veterinary Research, 2021, 52149.

[24]

OkwumabuaO, PetersonH, HsuHM, BochslerP, BehrM. Isolation and partial characterization of Streptococcus suis from clinical cases in cattle. Journal of Veterinary Diagnostic Investigation, 2017, 292160-168.

[25]

PaixãoL, CaldasJ, KloostermanTG, KuipersOP, VingaS, NevesAR. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism. Frontiers in Microbiology, 2015, 6: 1041.

[26]

Papp-Wallace, KM., Maguire, ME. 2006. Manganese transport and the role of manganese in virulence. Annual Review of Microbiology 60:187–209. https://doi.org/10.1146/annurev.micro.60.080805.142149 .

[27]

Quinlan ARHall IM. . BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 266841-842.

[28]

RoncaratiDScarlato V. . Regulation of heat-shock genes in bacteria: From signal sensing to gene expression output. FEMS Microbiology Reviews, 2017, 414549-574.

[29]

SabathK, NabihA, ArnoldC, MoussaR, DomjanD, ZauggJB, JonasS. Basis of gene-specific transcription regulation by the Integrator complex. Molecular Cell, 2024, 84132525-2541.e12.

[30]

SundarGS, IslamE, BrazaRD, SilverAB, Le BretonY, McIverKS. route of glucose uptake in the group a streptococcus impacts SLS-mediated hemolysis and survival in human blood. Frontiers in Cellular and Infection Microbiology, 2018, 8: 71.

[31]

Trappetti C, McAllister LJ, Chen A, Wang H, Paton AW, Oggioni MR, McDevitt CA, Paton JC. autoinducer 2 signaling via the phosphotransferase FruA drives galactose utilization by Streptococcus pneumoniae, Resulting in Hypervirulence. mBio 2017;8(1). https://doi.org/10.1128/mBio.02269-16.

[32]

TripodiF, NicastroR, ReghellinV, CoccettiP. Posttranslational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochimica Et Biophysica Acta, 2015, 18504620-627.

[33]

van de Rijn IKessler RE. 1980 Growth characteristics of group A streptococci in a new chemically defined medium Infection and Immunity 27 2 444 448https://doi.org/10.1128/iai.27.2.444-448.1980.10.1128/iai.27.2.444-448.1980

[34]

VaquerizasJM, KummerfeldSK, TeichmannSA, LuscombeNM. A census of human transcription factors: Function, expression and evolution. Nature Reviews Genetics, 2009, 104252-263.

[35]

Versace G, Palombo M, Menon A, Scarlato V, Roncarati D. Feeling the Heat: The Campylobacter jejuni HrcA transcriptional repressor is an intrinsic protein thermosensor. Biomolecules 2021;11(10). https://doi.org/10.3390/biom11101413.

[36]

VötschD, WillenborgM, WeldearegayYB, Valentin-WeigandP. Streptococcus suis - The "two faces" of a pathobiont in the porcine respiratory tract. Frontiers in Microbiology, 2018, 9: 480.

[37]

WeiserJN, FerreiraDM, PatonJC. Streptococcus pneumoniae: Transmission, colonization and invasion. Nature Reviews Microbiology, 2018, 166355-367.

[38]

WillenborgJ, HuberC, KoczulaA, LangeB, EisenreichW, Valentin-WeigandP, GoetheR. Characterization of the pivotal carbon metabolism of Streptococcus suis serotype 2 under ex vivo and chemically defined in vitro conditions by isotopologue profiling. Journal of Biological Chemistry, 2015, 29095840-5854.

[39]

Zeng, L., A.R. Walker, R.A. Burne, and Z.A. Taylor. 2023. glucose phosphotransferase system modulates pyruvate metabolism, bacterial fitness, and microbial ecology in oral streptococci.Journal of Bacteriology 205 (1).https://doi.org/10.1128/jb.00352-22.

[40]

ZhangY, LiuT, MeyerCA, EeckhouteJ, JohnsonDS, BernsteinBE, NusbaumC, MyersRM, BrownM, LiW, LiuXS. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 2008, 99R137.

[41]

Zuber USchumann W. . CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. Journal of Bacteriology, 1994, 17651359-1363.

Funding

Key Technologies Research and Development Program(2021YFD1800402)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/