Functional immunopeptides: advancing prevention and therapeutic strategies against animal diseases
Aldryan Cristianto Pratama , Xudong Yin , Jinwei Xu , Fang He
Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 16
Functional immunopeptides: advancing prevention and therapeutic strategies against animal diseases
Peptide-based therapies have emerged as groundbreaking advancements in both therapeutic and preventive strategies against infectious diseases. These approaches utilize innovative functional immunopeptides—such as antigenic peptides, antimicrobial, immune modulation, and delivery peptides derived from pathogens or hosts—to target specific immune mechanisms. In addition to their simplicity of use, peptide-based approaches provide several advantages. These include improved specificity and immunogenicity by targeting specific antigenic peptides and enhanced delivery of particular proteins or vaccines to targeted immune cells, which increases the efficiency of antigen presentation and provides a self-adjuvant effect and therapeutic properties. The most recent developments in peptide-based systems to increase vaccine efficacy and therapeutic interventions for animal diseases are investigated in this review. It encompasses fundamental ideas, immunomodulating functions, and peptide production techniques. Additionally, the improvements and synergistic advantages attained by combining these functional immunopeptides with vaccines or using them as stand-alone therapeutic agents are emphasized. This review demonstrates how peptide-based treatments in veterinary medicine enhance immune responses and inhibit or eliminate pathogens.
Immune regulation / Peptide-based strategies / Vaccine optimization / Medical and Health Sciences / Immunology
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Aziz, S., Almajhdi, F. N., Waqas, M., Ullah, I., Salim, M. A., Khan, N. A., & Ali, A. (2022). Contriving multiepitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.1004804 |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
Gessner, I., & Neundorf, I. (2020). Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. International Journal of Molecular Sciences, 21(7), Article 7. https://doi.org/10.3390/ijms21072536 |
| [34] |
González-Stegmaier, R., Peña, A., Villarroel-Espíndola, F., Aguila, P., Oliver, C., MacLeod-Carey, D., Rozas-Serri, M., Enriquez, R., & Figueroa, J. (2021). Full recombinant flagellin B from Vibrio anguillarum (rFLA) and its recombinant D1 domain (rND1) promote a pro-inflammatory state and improve vaccination against P. salmonis in Atlantic salmon (S. salar). Developmental and Comparative Immunology, 117, 103988. https://doi.org/10.1016/j.dci.2020.103988 |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
J, L., J, H., Dr, P., Jjh, C., A, G., Bw, S., R, M., E, A., & S, A. (2024). Discovery of a new class of cell-penetrating peptides by novel phage display platform. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-64405-w |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Karch, C. P., Li, J., Kulangara, C., Paulillo, S. M., Raman, S. K., Emadi, S., Tan, A., Helal, Z. H., Fan, Q., Khan, M. I., & Burkhard, P. (2017). Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(1), 241–251. https://doi.org/10.1016/j.nano.2016.08.030 |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
Ligtenberg, A. J. M., Bikker, F. J., & Bolscher, J. G. M. (2021). LFchimera: A synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 99(1), 128–137. https://doi.org/10.1139/bcb-2020-0285 |
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
Matsuda, T., Misato, K., Tamiya, S., Akeda, Y., Nakase, I., Kuroda, E., Takahama, S., Nonaka, M., Yamamoto, T., Fukuda, M. N., et al. (2022). Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. iScience, 25(11). https://doi.org/10.1016/j.isci.2022.105324 |
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
Miller, S.M., R. J. Simon, S. Ng, R. N. Zuckermann, J. M. Kerr, & W. H. Moos. 1995. Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Development Research 35:20–32. https://doi.org/10.1002/ddr.430350105. |
| [101] |
Mustafa, G., Mahrosh, H. S., Salman, M., Ali, M., Arif, R., Ahmed, S., & Ebaid, H. (2023). In silico analysis of honey bee peptides as potential inhibitors of capripoxvirus DNA-directed RNA polymerase. Animals: An Open Access Journal from MDPI, 13(14), 2281. https://doi.org/10.3390/ani13142281 |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
Popitool, K., Wataradee, S., Wichai, T., Noitang, S., Ajariyakhajorn, K., Charoenrat, T., Boonyaratanakornkit, V., & Sooksai, S. (2022). Potential of Pm11 antimicrobial peptide against bovine mastitis pathogens. American Journal of Veterinary Research, 84(1), ajvr.22.06.0096. https://doi.org/10.2460/ajvr.22.06.0096 |
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
Rezaei, M., Rabbani-khorasgani, M., Zarkesh-Esfahani, S. H., Emamzadeh, R., & Abtahi, H. (n.d.). Prediction of the Omp16 Epitopes for the Development of an Epitope-based Vaccine Against Brucellosis. Infectious Disorders - Drug Targets, 19(1), 36–45. https://doi.org/10.2174/1871526518666180709121653 |
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
Rossino, G., Marchese, E., Galli, G., Verde, F., Finizio, M., Serra, M., Linciano, P., & Collina, S. (2023). Peptides as therapeutic agents: Challenges and opportunities in the green transition Era. Molecules, 28(20), Article 20. https://doi.org/10.3390/molecules28207165 |
| [123] |
|
| [124] |
Saeed, S. I., Mergani, A., Aklilu, E., & Kamaruzzaman, N. F. (2022). Antimicrobial peptides: Bringing solution to the rising threats of antimicrobial resistance in livestock. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.851052 |
| [125] |
|
| [126] |
Shen, S., Ren, F., He, J., Wang, J., Sun, Y., & Hu, J. (2023). Recombinant antimicrobial peptide OaBac5 mini alleviates inflammation in pullorum disease chicks by modulating TLR4/MyD88/NF-κB pathway. Animals: An Open Access Journal from MDPI, 13(9), 1515. https://doi.org/10.3390/ani13091515 |
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
Takagi, S., Hayashi, S., Takahashi, K., Isogai, H., Bai, L., Yoneyama, H., Ando, T., Ito, K., & Isogai, E. (2012). Antimicrobial activity of a bovine myeloid antimicrobial peptide (BMAP-28) against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Animal Science Journal = Nihon Chikusan Gakkaiho, 83(6), 482–486. https://doi.org/10.1111/j.1740-0929.2011.00979.x |
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
TopuzoĞullari, M., Acar, T., Pelİt Arayici, P., UÇar, B., UĞurel, E., Abamor, E. Ş., ArasoĞlu, T., Turgut-Balik, D., & Derman, S. (2020). An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turkish Journal of Biology = Turk Biyoloji Dergisi, 44(3), 215–227. https://doi.org/10.3906/biy-2006-1 |
| [145] |
|
| [146] |
Uddin, M. B., Tanni, F., Hoque, S. F., Sajib, E. H., Faysal, M. A., Rahman, M., Galib, A., Emon, A. A., Hossain, M. M., Hasan, M., et al. (2022). A candidate multiepitope vaccine against Lumpy Skin Disease. Transboundary and Emerging Diseases, 69. https://doi.org/10.1111/tbed.14718 |
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
Zhao, Y., Yu, J., Su, Y., Shu, Y., Ma, E., Wang, J., Jiang, S., Wei, C., Li, D., Huang, Z., et al. (2025). A unified deep framework for peptide–major histocompatibility complex–T-cell receptor binding prediction. Nature Machine Intelligence, 1–11. https://doi.org/10.1038/s42256-025-01002-0 |
| [178] |
|
| [179] |
Zhou, B., Liu, K., Jiang, Y., Wei, J.-C., & Chen, P.-Y. (2011). Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response. Virology Journal, 8, 378. https://doi.org/10.1186/1743-422X-8-378 |
| [180] |
|
| [181] |
|
The Author(s)
/
| 〈 |
|
〉 |