Lactobacillusalleviates intestinal epithelial barrier function through GPR43-mediated M2 macrophage polarization
Lactobacillusspecies have excellent abilities to reduce intestinal inflammation and enhance gut barrier function. This study elucidated the potential mechanisms through which Lactobacillusmitigates lipopolysaccharide (LPS)-induced intestinal injury from the perspective of macrophage-intestinal epithelial cell interactions. Lactobacillusintervention improved the histopathological score; elevated ZO-1 and Occludin protein production; reduced CD16+ cell numbers; diminished IL-1β, IL-6, and TNF-α levels; decreased inducible nitric oxide synthase (iNOS) expression; increased CD163+ cell numbers; elevated IL-10 concentration; and increased arginase-1 (Arg1) expression in LPS-challenged piglets. Lactobacilluspretreatment also altered the colonic microbiota, thereby increasing the butyric acid concentration and GPR43 expression in the LPS-challenged piglets. Compared with those in the LPS group, sodium butyrate (SB) pretreatment decreased IL-1β, IL-6 and TNF-α secretion and iNOS expression but increased IL-10 secretion and Arg1 expression in macrophages. The SB-pretreated macrophages reduced the protein expression of TLR4, MyD88, and phosphorylated NF-κB p65 but increased the protein expression of ZO-1 and Occludin in intestinal epithelial cells. Moreover, GLPG0974 blocked the beneficial effects of SB on macrophages and intestinal epithelial cells. This study demonstrated that Lactobacillusimproves intestinal barrier function by regulating the macrophage phenotype through the control of butyric acid and GPR43 levels to further control inflammation.
Lactobacillus / Butyric acid / GPR43 / Macrophage / Gut barrier
[1] | Ayyanna, R., D. Ankaiah, and V. Arul. 2018. Anti-inflammatory and antioxidant properties of probiotic bacterium lactobacillus mucosae AN1 and lactobacillus fermentum SNR1 in Wistar Albino Rats. Frontiers in Microbiology 9: 3063. https://doi.org/10.3389/fmicb.2018.03063. |
[2] | Bain, C.C., and A.M. Mowat. 2014. Macrophages in intestinal homeostasis and inflammation. Immunological Reviews 260 (1): 102–117. https://doi.org/10.1111/imr.12192. |
[3] | Chen, J.L., P. Zheng, C. Zhang, B. Yu, J. He, J. Yu, J.Q. Luo, X.B. Mao, Z.Q. Huang, and D.W. Chen. 2017a. Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression. Journal of Animal Physiology and Animal Nutrition 101 (6): 1137–1146. https://doi.org/10.1111/jpn.12627. |
[4] | Chen, T., C.Y. Kim, A. Kaur, L. Lamothe, M. Shaikh, A. Keshavarzian, and B.R. Hamaker. 2017b. Dietary fiber-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food & Function 8 (3): 1166–1173. https://doi.org/10.1039/c6fo01532h. |
[5] | Chen, Y., W. Cui, X. Li, and H. Yang. 2021. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. Frontiers in Immunology 12: 761981. https://doi.org/10.3389/fimmu.2021.761981. |
[6] | Cui, Y., S. Qi, W. Zhang, J. Mao, R. Tang, C. Wang, J. Liu, X.M. Luo, and H. Wang. 2019. Lactobacillus reuteri ZJ617 culture supernatant attenuates acute liver injury induced in mice by lipopolysaccharide. Journal of Nutrition 149 (11): 2046–2055. https://doi.org/10.1093/jn/nxz088. |
[7] | Di Tommaso, N., A. Gasbarrini, and F.R. Ponziani. 2021. Intestinal barrier in human health and disease. International Journal of Environmental Research and Public Health 18 (23): 12836. https://doi.org/10.3390/ijerph182312836. |
[8] | Feng, W., Y. Wu, G. Chen, S. Fu, B. Li, B. Huang, D. Wang, W. Wang, and J. Liu. 2018. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner. Cellular Physiology and Biochemistry 47 (4): 1617–1629. https://doi.org/10.1159/000490981. |
[9] | Fu, J., and H. Wu. 2023. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annual Review of Immunology 41: 301–316. https://doi.org/10.1146/annurev-immunol-081022-021207. |
[10] | Gao, Q., G. Sun, J. Duan, C. Luo, C. Yangji, R. Zhong, L. Chen, Y. Zhu, B. Wangdui, and H. Zhang. 2022. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology 13: 969524. https://doi.org/10.3389/fmicb.2022.969524. |
[11] | Gensollen, T., S.S. Iyer, D.L. Kasper, and R.S. Blumberg. 2016. How colonization by microbiota in early life shapes the immune system. Science 352 (6285): 539–544. https://doi.org/10.1126/science.aad9378. |
[12] | Han, D., D. Lu, S. Huang, J. Pang, Y. Wu, J. Hu, X. Zhang, Y. Pi, G. Zhang, and J. Wang. 2022. Small extracellular vesicles from Ptpn1-deficient macrophages alleviate intestinal inflammation by reprogramming macrophage polarization via lactadherin enrichment. Redox Biology 58: 102558. https://doi.org/10.1016/j.redox.2022.102558. |
[13] | He, X., C. Yan, S. Zhao, Y. Zhao, R. Huang, and Y. Li. 2022. The preventive effects of probiotic Akkermansia muciniphila on D-galactose/AlCl3 mediated Alzheimer’s disease-like rats. Experimental Gerontology 170: 111959. https://doi.org/10.1016/j.exger.2022.111959. |
[14] | Hu, R., H. Lin, M. Wang, Y. Zhao, H. Liu, Y. Min, X. Yang, Y. Gao, and M. Yang. 2021. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers. Journal of Animal Science and Biotechnology 12 (1): 25. https://doi.org/10.1186/s40104-020-00532-4. |
[15] | Huang, S., S. Hu, S. Liu, B. Tang, Y. Liu, L. Tang, Y. Lei, L. Zhong, S. Yang, and S. He. 2022. Lithium carbonate alleviates colon inflammation through modulating gut microbiota and Treg cells in a GPR43-dependent manner. Pharmacological Research 175: 105992. https://doi.org/10.1016/j.phrs.2021.105992. |
[16] | Isidro, R.A., and C.B. Appleyard. 2016. Colonic macrophage polarization in homeostasis, inflammation, and cancer. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (1): G59-73. https://doi.org/10.1152/ajpgi.00123.2016. |
[17] | Jia, D.J., Q.W. Wang, Y.Y. Hu, J.M. He, Q.W. Ge, Y.D. Qi, L.Y. Chen, Y. Zhang, L.N. Fan, Y.F. Lin, Y. Sun, Y. Jiang, L. Wang, Y.F. Fang, H.Q. He, X.E. Pi, W. Liu, S.J. Chen, and L.J. Wang. 2022. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206(+) macrophages(IL-10) activation. Gut Microbes 14 (1): 2145843. https://doi.org/10.1080/19490976.2022.2145843. |
[18] | Kang, Y., X. Kang, H. Yang, H. Liu, X. Yang, Q. Liu, H. Tian, Y. Xue, P. Ren, X. Kuang, Y. Cai, M. Tong, L. Li, and W. Fan. 2022. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacological Research 175: 106020. https://doi.org/10.1016/j.phrs.2021.106020. |
[19] | Kimura, I., A. Ichimura, R. Ohue-Kitano, and M. Igarashi. 2020. Free fatty acid receptors in health and disease. Physiological Reviews 100 (1): 171–210. https://doi.org/10.1152/physrev.00041.2018. |
[20] | Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165 (6): 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041. |
[21] | Larabi, A., N. Barnich, and H.T.T. Nguyen. 2020. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 16 (1): 38–51. https://doi.org/10.1080/15548627.2019.1635384. |
[22] | Li, S.C., W.F. Hsu, J.S. Chang, and C.K. Shih. 2019. Combination of Lactobacillus acidophilus and bifidobacterium animalis subsp. lactis shows a stronger anti-inflammatory effect than individual strains in HT-29 cells. Nutrients 11 (5): 969. https://doi.org/10.3390/nu11050969. |
[23] | Li, J., S. Feng, Y. Pi, X. Jiang, X. Li, Z. Zhou, X. Liu, H. Wei, and S. Tao. 2023a. Limosilactobacillus johnsoni and Limosilactobacillus mucosae and their extracellular vesicles alleviate gut inflammatory injury by mediating macrophage polarization in a lipopolysaccharide-challenged piglet model. Journal of Nutrition 153 (8): 2497–2511. https://doi.org/10.1016/j.tjnut.2023.06.009. |
[24] | Li, J., S. Feng, Z. Wang, J. He, Z. Zhang, H. Zou, Z. Wu, X. Liu, H. Wei, and S. Tao. 2023b. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 9 (1): 33. https://doi.org/10.1038/s41522-023-00403-6. |
[25] | Liu, Y., Q. Xu, Y. Wang, T. Liang, X. Li, D. Wang, X. Wang, H. Zhu, and K. Xiao. 2021. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death & Disease 12 (1): 62. https://doi.org/10.1038/s41419-020-03365-1. |
[26] | Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42 (2): 145–151. https://doi.org/10.1016/j.cyto.2008.01.006. |
[27] | Lv, S., J. Li, X. Qiu, W. Li, C. Zhang, Z.N. Zhang, and B. Luan. 2017. A negative feedback loop of ICER and NF-kappaB regulates TLR signaling in innate immune responses. Cell Death and Differentiation 24 (3): 492–499. https://doi.org/10.1038/cdd.2016.148. |
[28] | Macia, L., J. Tan, A.T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata, C. Wong, et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fiber-induced gut homeostasis through regulation of the inflammasome. Nature Communications 6: 6734. https://doi.org/10.1038/ncomms7734. |
[29] | Mahmud, M.R., C. Jian, M.K. Uddin, M. Huhtinen, A. Salonen, O. Peltoniemi, H. Venhoranta, and C. Oliviero. 2023. Impact of intestinal microbiota on growth performance of suckling and weaned piglets. Microbiology Spectrum 11 (3): e0374422. https://doi.org/10.1128/spectrum.03744-22. |
[30] | Mao, J., S. Qi, Y. Cui, X. Dou, X.M. Luo, J. Liu, T. Zhu, Y. Ma, and H. Wang. 2020. Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-kappaB signaling and modulating metabolome in the piglet intestine. Journal of Nutrition 150 (5): 1313–1323. https://doi.org/10.1093/jn/nxaa009. |
[31] | Meng, Q., Z. Luo, C. Cao, S. Sun, Q. Ma, Z. Li, B. Shi, and A. Shan. 2020. Weaning alters intestinal gene expression involved in nutrient metabolism by shaping gut microbiota in pigs. Frontiers in Microbiology 11: 694. https://doi.org/10.3389/fmicb.2020.00694. |
[32] | Meurens, F., A. Summerfield, H. Nauwynck, L. Saif, and V. Gerdts. 2012. The pig: A model for human infectious diseases. Trends in Microbiology 20 (1): 50–57. https://doi.org/10.1016/j.tim.2011.11.002. |
[33] | Na, Y.R., M. Stakenborg, S.H. Seok, and G. Matteoli. 2019. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nature Reviews. Gastroenterology & Hepatology 16 (9): 531–543. https://doi.org/10.1038/s41575-019-0172-4. |
[34] | Quail, D.F., R.L. Bowman, L. Akkari, M.L. Quick, A.J. Schuhmacher, J.T. Huse, E.C. Holland, J.C. Sutton, and J.A. Joyce. 2016. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352 (6288): aad3018. https://doi.org/10.1126/science.aad3018. |
[35] | Rodriguez-Sorrento, A., L. Castillejos, P. Lopez-Colom, G. Cifuentes-Orjuela, M. Rodriguez-Palmero, J.A. Moreno-Munoz, D. Luise, P. Trevisi, and S.M. Martin-Orue. 2021. Effects of the administration of bifidobacterium longum subsp. infantis CECT 7210 and lactobacillus rhamnosus HN001 and their synbiotic combination with galacto-oligosaccharides against enterotoxigenic Escherichia coli F4 in an early weaned piglet model. Frontiers in Microbiology 12: 642549. https://doi.org/10.3389/fmicb.2021.642549. |
[36] | Sarkar, A., P. Mitra, A. Lahiri, T. Das, J. Sarkar, S. Paul, and P. Chakrabarti. 2023. Butyrate limits inflammatory macrophage niche in NASH. Cell Death & Disease 14 (5): 332. https://doi.org/10.1038/s41419-023-05853-6. |
[37] | Shin, D., S.Y. Chang, P. Bogere, K. Won, J.Y. Choi, Y.J. Choi, H.K. Lee, J. Hur, B.Y. Park, Y. Kim, and J. Heo. 2019. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One 14 (8): e0220843. https://doi.org/10.1371/journal.pone.0220843. |
[38] | Sica, A., M. Erreni, P. Allavena, and C. Porta. 2015. Macrophage polarization in pathology. Cellular and Molecular Life Sciences 72 (21): 4111–4126. https://doi.org/10.1007/s00018-015-1995-y. |
[39] | Tang, X., K. Xiong, R. Fang, and M. Li. 2022. Weaning stress and intestinal health of piglets: A review. Frontiers in Immunology 13: 1042778. https://doi.org/10.3389/fimmu.2022.1042778. |
[40] | Tao, S., Y. Bai, T. Li, N. Li, and J. Wang. 2019. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. The FASEB Journal 33 (9): 9897–9912. https://doi.org/10.1096/fj.201900204RR. |
[41] | Tian, B., Y. Geng, P. Wang, M. Cai, J. Neng, J. Hu, D. Xia, W. Cao, K. Yang, and P. Sun. 2022. Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high-fat diet-induced mice. European Journal of Nutrition 61 (7): 3767–3783. https://doi.org/10.1007/s00394-022-02927-7. |
[42] | Vieira, A.T., L. Macia, I. Galvao, F.S. Martins, M.C. Canesso, F.A. Amaral, C.C. Garcia, K.M. Maslowski, E. De Leon, D. Shim, J.R. Nicoli, J.L. Harper, M.M. Teixeira, and C.R. Mackay. 2015. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis & Rhematology 67 (6): 1646–1656. https://doi.org/10.1002/art.39107. |
[43] | Viola, M.F., and G. Boeckxstaens. 2021. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 70 (7): 1383–1395. https://doi.org/10.1136/gutjnl-2020-323121. |
[44] | Wang, Y., Y. Wu, J. Sailike, X. Sun, N. Abuduwaili, H. Tuoliuhan, M. Yusufu, and X.H. Nabi. 2020. Fourteen composite probiotics alleviate type 2 diabetes through modulating gut microbiota and modifying M1/M2 phenotype macrophage in db/db mice. Pharmacological Research 161: 105150. https://doi.org/10.1016/j.phrs.2020.105150. |
[45] | Wang, Z., Y. Bai, Y. Pi, W.J.J. Gerrits, S. de Vries, L. Shang, S. Tao, S. Zhang, D. Han, Z. Zhu, and J. Wang. 2021. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome 9 (1): 227. https://doi.org/10.1186/s40168-021-01175-x. |
[46] | Wang, C., S. Wei, B. Liu, F. Wang, Z. Lu, M. Jin, and Y. Wang. 2022. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 14 (1): 2057779. https://doi.org/10.1080/19490976.2022.2057779. |
[47] | Wu, Z., S. Huang, T. Li, N. Li, D. Han, B. Zhang, Z.Z. Xu, S. Zhang, J. Pang, S. Wang, G. Zhang, J. Zhao, and J. Wang. 2021. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 9 (1): 184. https://doi.org/10.1186/s40168-021-01115-9. |
[48] | Wyns, H., E. Meyer, E. Plessers, A. Watteyn, T. van Bergen, S. Schauvliege, S. De Baere, M. Devreese, P. De Backer, and S. Croubels. 2015. Modulation by gamithromycin and ketoprofen of in vitro and in vivo porcine lipopolysaccharide-induced inflammation. Veterinary Immunology and Immunopathology 168 (3–4): 211–222. https://doi.org/10.1016/j.vetimm.2015.09.014. |
[49] | Xia, W., I. Khan, X.A. Li, G. Huang, Z. Yu, W.K. Leong, R. Han, L.T. Ho, and W.L. Wendy Hsiao. 2020. Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacological Research 159: 104809. https://doi.org/10.1016/j.phrs.2020.104809. |
[50] | Xia, B., R. Zhong, W. Wu, C. Luo, Q. Meng, Q. Gao, Y. Zhao, L. Chen, S. Zhang, X. Zhao, and H. Zhang. 2022. Mucin O-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model. Microbiome 10 (1): 139. https://doi.org/10.1186/s40168-022-01326-8. |
[51] | Xie, Z., M. Li, M. Qian, Z. Yang, and X. Han. 2022. Co-cultures of Lactobacillus acidophilus and Bacillus subtilis enhance mucosal barrier by modulating gut microbiota-derived short-chain fatty acids. Nutrients 14 (21): 4475. https://doi.org/10.3390/nu14214475. |
[52] | Yang, G.Y., B. Xia, J.H. Su, T. He, X. Liu, L. Guo, S. Zhang, Y.H. Zhu, and J.F. Wang. 2020. Anti-inflammatory effects of Lactobacillus johnsonii L531 in a pig model of Salmonella Infantis infection involves modulation of CCR6(+) T-cell responses and ER stress. Veterinary Research 51 (1): 26. https://doi.org/10.1186/s13567-020-00754-4. |
[53] | Zhang, X., M. Akhtar, Y. Chen, Z. Ma, Y. Liang, D. Shi, R. Cheng, L. Cui, Y. Hu, A.A. Nafady, A.R. Ansari, E.M. Abdel-Kafy, and H. Liu. 2022. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome 10 (1): 107. https://doi.org/10.1186/s40168-022-01299-8. |
/
〈 | 〉 |