Investigation of the epidemiology, pathogenicity and immunogenicity of Bordetella bronchisepticaisolated from cats and dogs in China from 2021 to 2023

Qinghua Shang1,2, Wenhui Gao1,2, Xiangting Zhang1,2, Jianqing Zhao1,2, Ying Wu1,2, Haoqi Li1,2, Ming Zhou, Zhen F. Fu1,2, Chengguang Zhang1,2(), Ling Zhao1,2,3()

PDF
Animal Diseases ›› 2024, Vol. 4 ›› Issue (1) : 16. DOI: 10.1186/s44149-024-00120-3
Original Article

Investigation of the epidemiology, pathogenicity and immunogenicity of Bordetella bronchisepticaisolated from cats and dogs in China from 2021 to 2023

  • Qinghua Shang1,2, Wenhui Gao1,2, Xiangting Zhang1,2, Jianqing Zhao1,2, Ying Wu1,2, Haoqi Li1,2, Ming Zhou, Zhen F. Fu1,2, Chengguang Zhang1,2(), Ling Zhao1,2,3()
Author information +
History +

Abstract

Bordetella bronchiseptica( Bb) is recognized as a leading cause of respiratory diseases in dogs and cats. However, epidemiological data on Bbin dogs and cats in China are still limited, and there is no commercially available vaccine. Live vaccines containing Bbthat are widely used abroad are generally effective but can establish latency and potentially reactivate to cause illness in some immunodeficient vaccinated recipients, raising safety concerns. In this study, 34 canine-derived and two feline-derived Bbstrains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023. The PCR results showed that the percentage of positive Bbwas 22.94% (441/1922), and more than 90% of the Bbisolates had four virulence factor-encoding genes (VFGs), namely, fhaB, prn, betAand dnt. All the isolated strains displayed a multidrug-resistant phenotype. The virulence of 10 Bbstrains isolated from dogs with respiratory symptoms was tested in mice, and we found that eight isolates were highly virulent. Furthermore, the eight Bbisolates with high virulence were inactivated and intramuscularly injected into mice, and three Bbstrains (WH1218, WH1203 and WH1224) with the best protective efficacy were selected. Dogs immunized with these three strains exhibited strong protection against challenge with the Bbfield strain WH1218. Ultimately, the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate. Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bbfield strain WH1218. This study revealed that Bbis an important pathogen that causes respiratory diseases in domestic dogs and cats in China, and all the isolates exhibited multidrug resistance. The present work contributes to the current understanding of the prevalence, antimicrobial resistance, and virulence genes of Bbin domestic dogs and cats. Additionally, our results suggest that the WH1218 strain is a promising candidate safe and efficacious inactivated Bbvaccine.

Keywords

Bordetella bronchiseptica / Epidemiological investigation / Pathogenicity / Immunogenicity / Inactivated vaccine

Cite this article

Download citation ▾
Qinghua Shang, Wenhui Gao, Xiangting Zhang, Jianqing Zhao, Ying Wu, Haoqi Li, Ming Zhou, Zhen F. Fu, Chengguang Zhang, Ling Zhao. Investigation of the epidemiology, pathogenicity and immunogenicity of Bordetella bronchisepticaisolated from cats and dogs in China from 2021 to 2023. Animal Diseases, 2024, 4(1): 16 https://doi.org/10.1186/s44149-024-00120-3

References

[1]
Abdoli, A., R. Aalizadeh, H. Aminianfar, Z. Kianmehr, A. Teimoori, E. Azimi, N. Emamipour, M. Eghtedardoost, V. Siavashi, H. Jamshidi, M. et al. 2022. Safety and potency of BIV1-CovIran inactivated vaccine candidate for SARS-CoV-2: a preclinical study. Reviews in Medical Virology 32:e2305. https://doi.org/10.1002/rmv.2305.
[2]
Agarwal, L., H. Singh, C. Jani, P. Banankhah, M. Abdalla, J.S. Kurman, and R.A. Franco. 2022. A wolf in sheep’s clothing: fogs confer an unrecognized risk for their immunocompromised master. Respiratory Medicine Case Reports 38: 101672. https://doi.org/10.1016/j.rmcr.2022.101672.
[3]
Ai, W., Z. Peng, F. Wang, Y. Zhang, S. Xie, W. Liang, L. Hua, X. Wang, H. Chen, and B. Wu. 2019. A Marker-Free Bordetella bronchiseptica aroA/bscN double deleted mutant confers protection against lethal challenge. Vaccines (Basel) 7. https://doi.org/10.3390/vaccines7040176.
[4]
Al-Amoud, A.I., B.J. Clark, K.A. Assi, and H. Chrystyn. 2005. Determination of the bioavailability of gentamicin to the lungs following inhalation from two jet nebulizers. British Journal of Clinical Pharmacology 59: 542–545. https://doi.org/10.1111/j.1365-2125.2005.02360.x.
[5]
Bemis, D.A. 1992. Bordetella and Mycoplasma respiratory infections in dogs and cats. The Veterinary Clinics of North America. Small Animal Practice 22: 1173–1186. https://doi.org/10.1016/s0195-5616(92)50308-4.
[6]
Bemis, D.A., L.E. Carmichael, and M.J. Appel. 1977a. Naturally occurring respiratory disease in a kennel caused by Bordetella bronchiseptica. The Cornell Veterinarian 67:282–293.
[7]
Bemis, D.A., H.A. Greisen, and M.J. Appel. 1977b. Pathogenesis of canine bordetellosis. Journal of Infectious Diseases 135: 753–762. https://doi.org/10.1093/infdis/135.5.753.
[8]
Bey, R.F., F.J. Shade, R.A. Goodnow, and R.C. Johnson. 1981. Intranasal vaccination of dogs with liver avirulent Bordetella bronchiseptica: correlation of serum agglutination titer and the formation of secretory IgA with protection against experimentally induced infectious tracheobronchitis. American Journal of Veterinary Research 42:1130–1132.
[9]
Blaser, M.J., and D. Kirschner. 2007. The equilibria that allow bacterial persistence in human hosts. Nature 449: 843–849. https://doi.org/10.1038/nature06198.
[10]
Boot, R., R.H. Bakker, H. Thuis, and J.L. Veenema. 1993. An enzyme-linked immunosorbent assay (ELISA) for monitoring guineapigs and rabbits for Bordetella bronchiseptica antibodies. Laboratory Animals 27: 342–349. https://doi.org/10.1258/002367793780745624.
[11]
Borkner, L., L.M. Curham, M.M. Wilk, B. Moran, and K.H.G. Mills. 2021. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F(+) neutrophils. Mucosal Immunology 14: 1183–1202. https://doi.org/10.1038/s41385-021-00407-5.
[12]
Buboltz, A.M., T.L. Nicholson, M.R. Parette, S.E. Hester, J. Parkhill, and E.T. Harvill. 2008. Replacement of adenylate cyclase toxin in a lineage of Bordetella bronchiseptica. Journal of Bacteriology 190: 5502–5511. https://doi.org/10.1128/jb.00226-08.
[13]
Chambers, J.K., I. Matsumoto, T. Shibahara, M. Haritani, H. Nakayama, and K. Uchida. 2019. An outbreak of Fatal Bordetella bronchiseptica Bronchopneumonia in Puppies. Journal of Comparative Pathology 167: 41–45. https://doi.org/10.1016/j.jcpa.2018.12.002.
[14]
Chamorro, B.M., K. Luca, G. Swaminathan, N. Rochereau, J. Majorel, H. Poulet, B. Chanut, L. Piney, E. Mundt, and S. Paul. 2023. Mucosal vaccination with live attenuated Bordetella bronchiseptica protects against challenge in wistar rats. Vaccines (Basel) 11. https://doi.org/10.3390/vaccines11050982.
[15]
Clemmons, E.A., D. Chavez, L. Condel, J.W. Dutton 3rd., S. Price, and R. Lanford. 2021. Comparison of oral, nebulized and combination antibiotic treatment of Bordetella bronchiseptica in baboons (Papio spp.). Journal of Veterinary Pharmacology and Therapeutics 44: 836–841. https://doi.org/10.1111/jvp.12975.
[16]
CLSI. Performance standards for antimicrobial susceptibility testing. 32th ed. CLSI standard M100. Clinical and Laboratory Standards Institute; 2022.
[17]
Cui, X., X. Xu, P. Huang, G. Bao, and Y. Liu. 2022. Safety and efficacy of the Bordetella bronchiseptica vaccine combined with a vegetable oil adjuvant and multi-omics analysis of Its potential role in the protective response of rabbits. Pharmaceutics 14. https://doi.org/10.3390/pharmaceutics14071434.
[18]
Day, M.J., S. Carey, C. Clercx, B. Kohn, F. MarsilIo, E. Thiry, L. Freyburger, B. Schulz, and D.J. Walker. 2020. EAetiology of canine infectious respiratory disease complex and prevalence of its pathogens in Europe. Journal of Comparative Pathology 176: 86–108. https://doi.org/10.1016/j.jcpa.2020.02.005.
[19]
Doo, K., R. Pillai, A. Kazeros, and R. Smith. 2017. A case of presumed infection with Bordetella Bronchiseptica. In: An Immunocompromised Human Subject. American journal of respiratory and critical care medicine 195.
[20]
Dubois, V., J. Chatagnon, A. Thiriard, H. Bauderlique-Le Roy, A.S. Debrie, L. Coutte, and C. Locht. 2021. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 6: 6. https://doi.org/10.1038/s41541-020-00270-8.
[21]
Ellis, J.A., D.M. Haines, K.H. West, J.H. Burr, A. Dayton, H.G. Townsend, E.W. Kanara, C. Konoby, A. Crichlow, K. Martin, and G. Headrick. 2001. Effect of vaccination on experimental infection with Bordetella bronchiseptica in dogs. Journal of the American Veterinary Medical Association 218: 367–375. https://doi.org/10.2460/javma.2001.218.367.
[22]
Ellis, J.A., S.P. Gow, C.L. Waldner, S. Shields, S. Wappel, A. Bowers, S. Lacoste, Z. Xu, and E. Ball. 2016. Comparative efficacy of intranasal and oral vaccines against Bordetella bronchiseptica in dogs. The Veterinary Journal 212: 71–77. https://doi.org/10.1016/j.tvjl.2016.04.004.
[23]
Faqihi, F., A. Alharthy, P. Pirompanich, A. Noor, A. Shahzad, N. Nasim, A. Balhamar, Z.A. Memish, and D. Karakitsos. 2020. CoCo-infection of SARS-CoV-2 and Bordetella bronchiseptica in a young man with idiopathic nonnon-cystic bronchiectasis and vitamin D (3) deficiency. Respiratory Medicine Case Reports 31: 101203. https://doi.org/10.1016/j.rmcr.2020.101203.
[24]
Fastrès, A., M.A. Canonne, B. Taminiau, F. Billen, M.M. Garigliany, G. Daube, and C. Clercx. 2020. Analysis of the lung microbiota in dogs with Bordetella bronchiseptica infection and correlation with culture and quantitative polymerase chain reaction. Veterinary Research 51: 46. https://doi.org/10.1186/s13567-020-00769-x.
[25]
Fingermann, M., and D. Hozbor. 2015. Acid tolerance response of Bordetella bronchiseptica in avirulent phase. Microbiological Research 181: 52–60. https://doi.org/10.1016/j.micres.2015.09.001.
[26]
First, N.J., J. Pedreira-Lopez, M.R.F. San-Silvestre, K.M. Parrish, X.H. Lu, and M.C. Gestal. 2023. Bordetella spp. utilize the type 3 secretion system to manipulate the VIP/VPAC2 signaling and promote colonization and persistence of the three classical Bordetella in the lower respiratory tract. Frontiers in cellular and infection microbiology 13: 1111502. https://doi.org/10.3389/fcimb.2023.1111502.
[27]
Goodnow, R.A. 1980. Biology of Bordetella bronchiseptica. Microbiological Reviews 44: 722–738. https://doi.org/10.1128/mr.44.4.722-738.1980.
[28]
Goodnow, R.A., F.J. Shade, and W.P. Switzer. 1979. Efficacy of Bordetella bronchiseptica bacterin in controlling enzootic atrophic rhinitis in swine. American Journal of Veterinary Research 40: 58–60.
[29]
Gueirard, P., and N. Guiso. 1993. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin. Infection and Immunity 61: 4072–4078. https://doi.org/10.1128/iai.61.10.4072-4078.1993.
[30]
Guiso, N., M. Rocancourt, M. Szatanik, and J.M. Alonso. 1989. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microbial Pathogenesis 7: 373–380. https://doi.org/10.1016/0882-4010(89)90040-5.
[31]
Gupta, S., P. Goyal, and J. Mattana. 2019. Bordetella bronchiseptica pneumonia a thread in the diagnosis of human immunodeficiency virus infection. Idcases 15: e00509. https://doi.org/10.1016/j.idcr.2019.e00509.
[32]
Harvill, E.T., P.A. Cotter, M.H. Yuk, and J.F. Miller. 1999. Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infection and Immunity 67: 1493–1500. https://doi.org/10.1128/iai.67.3.1493-1500.1999.
[33]
Hozbor, D., F. Fouque, and N. Guiso. 1999. Detection of Bordetella bronchisepticaBordetella bronchiseptica by the polymerase chain reaction. Research in Microbiology 150: 333–341. https://doi.org/10.1016/s0923-2508(99)80059-x.
[34]
Jin, L., Z. Li, X. Zhang, J. Li, and F. Zhu. 2022. CoronaVac: A review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Human Vaccines & Immunotherapeutics 18: 2096970. https://doi.org/10.1080/21645515.2022.2096970.
[35]
Jorgensen, J.H.P.M., K.C. Carroll, G. Funke, M.L. Landry, S.S. Richter, et al. 2015. Manual of Clinical Microbiology. Eleventh. Washington, DC: ASM Press. https://doi.org/10.1128/9781555817381.
[36]
Kadlec, K., and S. Schwarz. 2018. Antimicrobial resistance in Bordetella bronchiseptica. Microbiol Spectr 6. https://doi.org/10.1128/microbiolspec. ARBA-0024–2017.
[37]
Kamanova, J. 2020. Bordetella type III secretion injectosome and effector proteins. Frontiers in Cellular and Infection Microbiology 10: 466. https://doi.org/10.3389/fcimb.2020.00466.
[38]
Khelef, N., H. Sakamoto, and N. Guiso. 1992. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microbial Pathogenesis 12: 227–235. https://doi.org/10.1016/0882-4010(92)90057-u.
[39]
Kraai, I., M. Knoester, E. Bathoorn, M. Bakker, and M. Nijland. 2023. Zoonotic transmission of vaccine-derived Bordetella bronchiseptica. Open Forum Infect Dis 10: ofad421. https://doi.org/10.1093/ofid/ofad421.
[40]
Lappin, M.R., J. Blondeau, D. Boothe, E.B. Breitschwerdt, L. Guardabassi, D.H. Lloyd, M.G. Papich, S.C. Rankin, J.E. Sykes, J. Turnidge, and J.S. Weese. 2017. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: antimicrobial guidelines working group of the international society for companion animal infectious diseases. Journal of Veterinary Internal Medicine 31: 279–294. https://doi.org/10.1111/jvim.14627.
[41]
Linz, B., Y.V. Ivanov, A. Preston, L. Brinkac, J. Parkhill, M. Kim, S.R. Harris, L.L. Goodfield, N.K. Fry, A.R. Gorringe, T.L. et al. 2016. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 17: 767. https://doi.org/10.1186/s12864-016-3112-5.
[42]
Maboni, G., M. Seguel, A. Lorton, R. Berghaus, and S. Sanchez. 2019. Canine infectious respiratory disease: new insights into the etiology and epidemiology of associated pathogens. PLoS One 14: e0215817. https://doi.org/10.1371/journal.pone.0215817.
[43]
Magiorakos, A.P., A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology & Infection 18: 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
[44]
Malter, K.B., M.E. Tugel, M. Gil-Rodriguez, G. Guardia, S.W. Jackson, W.G. Ryan, and G.E. Moore. 2022. Variability in nonnon-core vaccination rates of dogs and cats in veterinary clinics across the United States. Vaccine 40: 1001–1009. https://doi.org/10.1016/j.vaccine.2022.01.003.
[45]
Marouf, S., H.M. Ibrahim, M.S. El-Naggar, A.A. Swelum, A.H. Alqhtani, M.T. El-Saadony, K.A. El-Tarabily, and H.M. Salem. 2022. Inactivated pentavalent vaccine against mycoplasmosis and salmonellosis for chickens. Poultry Science 101: 102139. https://doi.org/10.1016/j.psj.2022.102139.
[46]
Matsuu, A., M. Yabuki, E. Aoki, and M. Iwahana. 2020. Molecular detection of canine respiratory pathogens between 2017 and 2018 in Japan. Journal of Veterinary Medical Science 82: 690–694. https://doi.org/10.1292/jvms.20-0017.
[47]
McCandlish, I.A., H. Thompson, and N.G. Wright. 1978a. Vaccination against canine bordetellosis using an aluminum hydroxide adjuvant vaccine. Research in Veterinary Science 25: 51–57.
[48]
McCandlish, I.A., H. Thompson, and N.G. Wright. 1978b. Vaccination against canine bordetellosis: protection from contact challenge. The Veterinary Record 102: 479–483. https://doi.org/10.1136/vr.102.22.479.
[49]
Meyers, R.S., J. Thackray, K.L. Matson, C. McPherson, L. Lubsch, R.C. Hellinga, and D.S. Hoff. 2020. Key potentially inappropriate drugs in pediatrics: the KIDs List. Journal of Pediatric Pharmacology and Therapeutics 25: 175–191. https://doi.org/10.5863/1551-6776-25.3.175.
[50]
Morgane Canonne, A., E. Roels, M. Menard, L. Desquilbet, F. Billen, and C. Clercx. 2020. Clinical response to 2 protocols of aerosolized gentamicin in 46 dogs with Bordetella bronchiseptica infection (2012–2018). Journal of Veterinary Internal Medicine 34: 2078–2085. https://doi.org/10.1111/jvim.15843.
[51]
Mulkoju, R.C., V. Rajuri, S. Leo, and R.R. Kolan. 2022. A tale of three in symbiosis: TB-COVID-19-Bordetella coinfection. Int J Mycobacteriol 11: 463–465. https://doi.org/10.4103/ijmy.ijmy_166_22.
[52]
Nagarakanti, S., and E. Bishburg. 2021. Coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Bordetella bronchiseptica pneumonia in a renal transplant patient. Cureus 13: e13113. https://doi.org/10.7759/cureus.13113.
[53]
Ostle, G.N. 1989. Cough associated with canine vaccination? The Veterinary Record 125: 446. https://doi.org/10.1136/vr.125.17.446-a.
[54]
Papantoniou, S., A. Tsakiris, T. Ladopoulos, G. Kranidiotis, and C. Tamvakos. 2021. A case of Bordetella bronchiseptica bacteremia in a patient with COVID-19: brief report. Cureus 13: e15976. https://doi.org/10.7759/cureus.15976.
[55]
Pecora, D.V. 1976. Bacteriologic cultural examination of the lower respiratory tract of laboratory dogs. American Journal of Veterinary Research 37: 1511–1513.
[56]
Pierce, M., W. Slipke, and M. Biagi. 2022. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Bordetella bronchiseptica co-infection in a stem cell transplant patient. Antibiotics (Basel) 11. https://doi.org/10.3390/antibiotics11091200.
[57]
Porter, J.F., and A.C. Wardlaw. 1993. Long-term survival of Bordetella bronchiseptica in lakewater and in buffered saline without added nutrients. FEMS Microbiology Letters 110: 33–36. https://doi.org/10.1111/j.1574-6968.1993.tb06291.x.
[58]
Porter, J.F., R. Parton, and A.C. Wardlaw. 1991. Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Applied and Environment Microbiology 57: 1202–1206. https://doi.org/10.1128/aem.57.4.1202-1206.1991.
[59]
Ross, P.J., C.E. Sutton, S. Higgins, A.C. Allen, K. Walsh, A. Misiak, E.C. Lavelle, R.M. McLoughlin, and K.H. Mills. 2013. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towardds the rational design of an improved acellular pertussis vaccine. PLoS Pathogens 9: e1003264. https://doi.org/10.1371/journal.ppat.1003264.
[60]
Sameed, M., Sullivan, S., Marciniak, E.T., Deepak, J., 2019. Chronic cough and cystic lung disease caused by Bordetella bronchiseptica in a patient with AIDS. BMJ Case Rep 12. https://doi.org/10.1136/bcr-2018-228741.
[61]
Shade, F.J., and R.A. Goodnow. 1979. Intranasal immunization of dogs against Bordetella bronchiseptica-induced tracheobronchitis (kennel cough) with modified live-Bordetella bronchiseptica vaccine. American Journal of Veterinary Research 40: 1241–1243.
[62]
Sharma, A.K., N. Dhasmana, N. Dubey, N. Kumar, A. Gangwal, M. Gupta, and Y. Singh. 2017. Bacterial virulence factors: secreted for survival. Indian J Microbiol 57: 1–10. https://doi.org/10.1007/s12088-016-0625-1.
[63]
Singleton, D.A., J. Stavisky, C. Jewell, S. Smyth, B. Brant, F. Sánchez-Vizcaíno, S. Dawson, G.L. Pinchbeck, P.J.M. Noble, and A.D. Radford. 2019. Small animal disease surveillance 2019: respiratory disease, antibiotic prescription and canine infectious respiratory disease complex. The Veterinary Record 184: 640–645. https://doi.org/10.1136/vr.l3128.
[64]
Speakman, A.J., S. Dawson, S.H. Binns, C.J. Gaskell, C.A. Hart, and R.M. Gaskell. 1999. Bordetella bronchiseptica infection in the cat. Journal of Small Animal Practice 40: 252–256. https://doi.org/10.1111/j.1748-5827.1999.tb03074.x.
[65]
Stephenson, E.H., C.J. Trahan, J.W. Ezzell, W.C. Mitchell, T.G. Abshire, D.D. Oland, and G.O. Nelson. 1989. Efficacy of a commercial bacterin in protecting strain 13 guineapigs against Bordetella bronchiseptica pneumonia. Laboratory Animals 23: 261–269. https://doi.org/10.1258/002367789780810581.
[66]
Tabatabaei, M., and H.R. Rohani. 2022. Identification of Bordetella bronchiseptica in the throat and nose of dogs and cats by PCR. Mol Biol Res Commun 11: 127–131. https://doi.org/10.22099/mbrc.2022.43873.1755.
[67]
Tatem, L.L., T. Veale, C. Richardson, and T. Luckhardt. 2023. Canine acquired pneumonia caused by Bordetella bronchiseptica. Idcases 34: e01922. https://doi.org/10.1016/j.idcr.2023.e01922.
[68]
Thompson, H., I.A. McCandlish, and N.G. Wright. 1976. Experimental respiratory disease in dogs due to Bordetella bronchiseptica. Research in Veterinary Science 20: 16–23.
[69]
Wang, J., S. Sun, Y. Chen, D. Chen, L. Sang, and X. Xie. 2020. Characterization of Bordetella bronchiseptica isolated from rabbits in Fujian. China. Epidemiol Infect 148: e237. https://doi.org/10.1017/s0950268820001879.
[70]
Weingart, C.L., and A.A. Weiss. 2000. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infection and Immunity 68: 1735–1739. https://doi.org/10.1128/iai.68.3.1735-1739.2000.
[71]
Woolfrey, B.F., and J.A. Moody. 1991. Human infections associated with Bordetella bronchiseptica. Clinical Microbiology Reviews 4: 243–255. https://doi.org/10.1128/cmr.4.3.243.
[72]
Xu, X., J. Li, P. Huang, X. Cui, X. Li, J. Sun, Y. Huang, Q. Ji, Q. Wei, G. Bao, and Y. Liu. 2023. Isolation, identification and drug resistance rates of bacteria from pigs in Zhejiang and Surrounding areas during 2019-2021. Vet Sci 10. https://doi.org/10.3390/vetsci10080502.
[73]
Yacoub, A.T., M. Katayama, J. Tran, R. Zadikany, M. Kandula, and J. Greene. 2014. Bordetella bronchiseptica in the immunosuppressed population - a case series and review. Mediterr J Hematol Infect Dis 6: e2014031. https://doi.org/10.4084/mjhid.2014.031.
[74]
Yondo, A., A.A. Kalantari, I. Fernandez-Marrero, A. McKinney, H.K. Naikare, and B.T. Velayudhan. 2023. Predominance of canine parainfluenza virus and mycoplasma in canine infectious respiratory disease complex in dogs. Pathogens 12. https://doi.org/10.3390/pathogens12111356.
[75]
Yount, K.S., J. Jennings-Gee, K. Caution, A.R. Fullen, K.N. Corps, S. Quataert, R. Deora, and P. Dubey. 2019. Bordetella colonization factor A (BcfA) elicits protective immunity against Bordetella bronchiseptica in the absence of an additional adjuvant. Infect Immun 87. https://doi.org/10.1128/iai.00506-19.
[76]
Zhang, Y., H. Yang, L. Guo, M. Zhao, F. Wang, W. Song, L. Hua, L. Wang, W. Liang, X. Tang, Z. Peng, and B. Wu. 2021. Isolation, antimicrobial resistance phenotypes, and virulence genes of Bordetella bronchiseptica from pigs in China, 2018–2020. Front Vet Sci 8: 672716. https://doi.org/10.3389/fvets.2021.672716.
Funding
Guangdong Major Project of Basic and Applied Basic Research(2020B0301030007)
PDF

Accesses

Citations

Detail

Sections
Recommended

/