Characterization and genomics analysis of phage PGX1 against multidrug-resistant enterotoxigenic E. coliwith in vivo and in vitro efficacy assessment

Dayue Hu1,2,3, Ping Qian1,2,3(), Dongyang Gao1,2,3, Xinxin Li1,2,3, Linkang Wang1,2,3, Hongyue Ji1,2,3, Shuang Wang1,2,3, Xiangmin Li1,2,3()()

PDF
Animal Diseases ›› 2024, Vol. 4 ›› Issue (1) : 7. DOI: 10.1186/s44149-024-00112-3
Original Article

Characterization and genomics analysis of phage PGX1 against multidrug-resistant enterotoxigenic E. coliwith in vivo and in vitro efficacy assessment

  • Dayue Hu1,2,3, Ping Qian1,2,3(), Dongyang Gao1,2,3, Xinxin Li1,2,3, Linkang Wang1,2,3, Hongyue Ji1,2,3, Shuang Wang1,2,3, Xiangmin Li1,2,3()()
Author information +
History +

Abstract

Enterotoxigenic E. coliis one of the bacterial pathogens contributing to the global resistance crisis in public health and animal husbandry. The problem of antibiotic resistance is becoming more and more serious, and phage is considered one of the potential alternatives to antibiotics that could be utilized to treat bacterial infections. Our study isolated and identified a lytic phage PGX1 against multidrug-resistant enterotoxigenic E. coliEC6 strain from sewage. The phage lysis profile revealed that PGX1 exhibited a lytic effect on multidrug-resistant enterotoxigenic E. colistrains of serotype O60. Through phage whole genome sequencing and bioinformatics analysis, PGX1 was found to be the class Caudoviricetes, family Autographiviridae,genus Teseptimavirus. The length of the PGX1 genome is about 37,009 bp, containing 54 open reading frames (ORFs). Notably, phage PGX1 lacks any lysogenic-related genes or virulence genes. Furthermore, phage PGX1 demonstrates strong adaptability, tolerance, and stability in various pH (pH4-10) and temperatures (4-40°C). The in vivo and in vitro tests demonstrated that phage PGX1 significantly removes and inhibits the formation of multidrug-resistant EC6 biofilm and effectively controls the Galleria mellonellalarvae and enterotoxigenic E. coliEC6 during mice infection. In conclusion, the above findings demonstrated that phage PGX1 may be a novel antimicrobial agent to control multidrug-resistant E. coliinfections.

Keywords

Enterotoxigenic E. coli / Multidrug-resistant bacteria / Phage PGX1

Cite this article

Download citation ▾
Dayue Hu, Ping Qian, Dongyang Gao, Xinxin Li, Linkang Wang, Hongyue Ji, Shuang Wang, Xiangmin Li. Characterization and genomics analysis of phage PGX1 against multidrug-resistant enterotoxigenic E. coliwith in vivo and in vitro efficacy assessment. Animal Diseases, 2024, 4(1): 7 https://doi.org/10.1186/s44149-024-00112-3

References

[1]
Abri, R., A. Javadi, R. Asghari, V. Razavilar, T.Z. Salehi, F. Safaeeyan, and M.A. Rezaee. 2019. Surveillance for enterotoxigenic & enteropathogenic Escherichia coli isolates from animal source foods in Northwest Iran. Indian Journal of Medical Research 150: 87–91. https://doi.org/10.4103/ijmr.IJMR_2019_17.
[2]
Alcock, B.P., A.R. Raphenya, T.T.Y. Lau, K.K. Tsang, M. Bouchard, A. Edalatmand, W. Huynh, A.V. Nguyen, A.A. Cheng, S. Liu, et al. 2020. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research 48: D517–D525. https://doi.org/10.1093/nar/gkz935.
[3]
Alexyuk, P., Bogoyavlenskiy, A., Alexyuk, M., Akanova, K., Moldakhanov, Y., and V. Berezin. 2022. Isolation and characterization of lytic bacteriophages active against clinical strains of E. coli and development of a phage antimicrobial cocktail. Viruses 14. https://doi.org/10.3390/v14112381.
[4]
Alsaadi, A., B. Beamud, M. Easwaran, F. Abdelrahman, A. El-Shibiny, M.F. Alghoribi, and P. Domingo-Calap. 2021. Learning from mistakes: the role of phages in pandemics. Frontiers in Microbiology 12: 653107. https://doi.org/10.3389/fmicb.2021.653107.
[5]
Antimicrobial Resistance, C. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399: 629–655. https://doi.org/10.1016/s0140-6736(21)02724-0.
[6]
Antoine, C., Laforet, F., Blasdel, B., Fall, A., Duprez, J.N., Mainil, J., Delcenserie, V., and D. Thiry. 2021. In vitro characterization and in vivo efficacy assessment in galleria mellonella larvae of newly isolated bacteriophages against Escherichia coli K1. Viruses-Basel 13. https://doi.org/10.3390/v13102005.
[7]
Arumugam, S.N., P. Manohar, S. Sukumaran, S. Sadagopan, B. Loh, S. Leptihn, and R. Nachimuthu. 2022. Antibacterial efficacy of lytic phages against multidrug-resistant Pseudomonas aeruginosa infections in bacteraemia mice models. BMC Microbiology 22: 187. https://doi.org/10.1186/s12866-022-02603-0.
[8]
Asai, M., Li, Y., Newton, S.M., Robertson, B.D., and Langford, P.R. 2023. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 47. https://doi.org/10.1093/femsre/fuad011.
[9]
Bao, H., Y. Zhou, K. Shahin, H. Zhang, F. Cao, M. Pang, X. Zhang, S. Zhu, A. Olaniran, S. Schmidt, and R. Wang. 2020. The complete genome of lytic Salmonella phage vB_SenM-PA13076 and therapeutic potency in the treatment of lethal Salmonella Enteritidis infections in mice. Microbiological Research 237: 126471. https://doi.org/10.1016/j.micres.2020.126471.
[10]
Borman, A.M. 2022. The use of galleria mellonella larvae to study the pathogenicity and clonal lineage-specific behaviors of the emerging fungal pathogen candida auris. Methods in Molecular Biology 2517: 287–298. https://doi.org/10.1007/978-1-0716-2417-3_23.
[11]
Bowler, P.G. 2018. Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. Journal of Wound Care 27: 273–277. https://doi.org/10.12968/jowc.2018.27.5.273.
[12]
Chan, H.K., and R.Y.K. Chang. 2022. Inhaled delivery of anti-pseudomonal phages to tackle respiratory infections caused by superbugs. Journal of Aerosol Medicine and Pulmonary Drug Delivery 35: 73–82. https://doi.org/10.1089/jamp.2021.0045.
[13]
Chaudhary, N., B. Mohan, R.S. Mavuduru, Y. Kumar, and N. Taneja. 2022. Characterization, genome analysis and in vitro activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant and extensively drug-resistant biofilm-forming uropathogenic Escherichia coli isolates, India. Journal of Applied Microbiology 132: 3387–3404. https://doi.org/10.1111/jam.15439.
[14]
Chen, C., H. Chen, Y. Zhang, H.R. Thomas, M.H. Frank, Y. He, and R. Xia. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13: 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009.
[15]
Choi, I.Y., D.H. Park, B.A. Chin, C. Lee, J. Lee, and M.K. Park. 2020. Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor. Journal of Animal Science and Technology 62: 668–681. https://doi.org/10.5187/jast.2020.62.5.668.
[16]
CLSI. 2018. Performance standards for antimicrobial disk susceptibility test, M02, 13th ed., 92. Wayne: Clinical and Laboratory Standards Institute.
[17]
Dion, M.B., F. Oechslin, and S. Moineau. 2020. Phage diversity, genomics and phylogeny. Nature Reviews Microbiology 18: 125–138. https://doi.org/10.1038/s41579-019-0311-5.
[18]
Duarte, A.C., L. Fernandez, V. De Maesschalck, D. Gutierrez, A.B. Campelo, Y. Briers, R. Lavigne, A. Rodriguez, and P. Garcia. 2021. Synergistic action of phage phiIPLA-RODI and lytic protein CHAPSH3b: A combination strategy to target Staphylococcus aureus biofilms. NPJ Biofilms and Microbiomes 7: 39. https://doi.org/10.1038/s41522-021-00208-5.
[19]
El-Shibiny, A., S. El-Sahhar, and M. Adel. 2017. Phage applications for improving food safety and infection control in Egypt. Journal of Applied Microbiology 123: 556–567. https://doi.org/10.1111/jam.13500.
[20]
Erol, H.B., B. Kaskatepe, S. Ozturk, and Z. Safi Oz. 2022. The comparison of lytic activity of isolated phage and commercial Intesti bacteriophage on ESBL producer E coli and determination of Ec_P6 phage efficacy with in vivo Galleria mellonella larvae model. Microbial Pathogenesis 167: 105563. https://doi.org/10.1016/j.micpath.2022.105563.
[21]
Feng, Y.Y., S.L. Ong, J.Y. Hu, X.L. Tan, and W.J. Ng. 2003. Effects of pH and temperature on the survival of coliphages MS2 and Qbeta. Journal of Industrial Microbiology and Biotechnology 30: 549–552. https://doi.org/10.1007/s10295-003-0080-y.
[22]
Feng, J., F. Li, L. Sun, L. Dong, L. Gao, H. Wang, L. Yan, and C. Wu. 2023. Characterization and genome analysis of phage vB_KpnS_SXFY507 against Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Frontiers in Microbiology 14: 1081715. https://doi.org/10.3389/fmicb.2023.1081715.
[23]
Gao, M., C. Wang, X. Qiang, H. Liu, P. Li, G. Pei, X. Zhang, Z. Mi, Y. Huang, Y. Tong, and C. Bai. 2020. Isolation and characterization of a novel bacteriophage infecting carbapenem-resistant klebsiella pneumoniae. Current Microbiology 77: 722–729. https://doi.org/10.1007/s00284-019-01849-8.
[24]
Gao, D., H. Ji, L. Wang, X. Li, D. Hu, J. Zhao, S. Wang, P. Tao, X. Li, and P. Qian. 2022. Fitness trade-offs in phage cocktail-resistant salmonella enterica serovar enteritidis results in increased antibiotic susceptibility and reduced virulence. Microbiology Spectrum 10: e0291422. https://doi.org/10.1128/spectrum.02914-22.
[25]
Gao, D., H. Ji, X. Li, X. Ke, X. Li, P. Chen, and P. Qian. 2023. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiological Research 273: 127412. https://doi.org/10.1016/j.micres.2023.127412.
[26]
Gonzalez, S., Fernandez, L., Campelo, A.B., Gutierrez, D., Martinez, B., Rodriguez, A., and Garcia, P., 2017. The behavior of staphylococcus aureus dual-species biofilms treated with bacteriophage phiIPLA-RODI depends on the accompanying microorganism. Applied and Environmental Microbiology 83. https://doi.org/10.1128/AEM.02821-16.
[27]
Goodarzi, F., M. Hallajzadeh, M. Sholeh, M. Talebi, V.P. Mahabadi, and N. Amirmozafari. 2021. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. Iranian Journal of Microbiology 13: 691–702. https://doi.org/10.18502/ijm.v13i5.7436.
[28]
Gordillo Altamirano, F.L., and J.J. Barr. 2019. Phage therapy in the postantibiotic era. Clinical Microbiology Reviews 32. https://doi.org/10.1128/CMR.00066-18.
[29]
Gorski, A., R. Miedzybrodzki, J. Borysowski, K. Dabrowska, P. Wierzbicki, M. Ohams, G. Korczak-Kowalska, N. Olszowska-Zaremba, M. Lusiak-Szelachowska, M. Klak, et al. 2012. Phage as a modulator of immune responses: practical implications for phage therapy. Advances in Virus Research 83: 41–71. https://doi.org/10.1016/B978-0-12-394438-2.00002-5.
[30]
Grant, J.R., E. Enns, E. Marinier, A. Mandal, E.K. Herman, C.Y. Chen, M. Graham, G. Van Domselaar, and P. Stothard. 2023. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Research. https://doi.org/10.1093/nar/gkad326.
[31]
Gresse, R., F. Chaucheyras-Durand, M.A. Fleury, T. Van de Wiele, E. Forano, and S. Blanquet-Diot. 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends in Microbiology 25: 851–873. https://doi.org/10.1016/j.tim.2017.05.004.
[32]
Guglielmotti, D.M., D.J. Mercanti, J.A. Reinheimer, and L. Quiberoni Adel. 2011. Review: Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Frontiers in Microbiology 2: 282. https://doi.org/10.3389/fmicb.2011.00282.
[33]
Harms, A., Maisonneuve, E., and Gerdes, K., 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354. https://doi.org/10.1126/science.aaf4268.
[34]
Hathroubi, S., M.A. Mekni, P. Domenico, D. Nguyen, and M. Jacques. 2017. Biofilms: microbial shelters against antibiotics. Microbial Drug Resistance 23: 147–156. https://doi.org/10.1089/mdr.2016.0087.
[35]
Holger, D.J., K.L. Lev, R. Kebriaei, T. Morrisette, R. Shah, J. Alexander, S.M. Lehman, and M.J. Rybak. 2022. Bacteriophage-antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa: In vitro synergy testing. Journal of Applied Microbiology 133: 1636–1649. https://doi.org/10.1111/jam.15647.
[36]
Hosangadi, D., P.G. Smith, D.C. Kaslow, B.K. Giersing, E. Who, Shigella Vaccine Consultation Expert, G. 2019. WHO consultation on ETEC and Shigella burden of disease, Geneva, 6–7th April 2017: meeting report. Vaccine 37: 7381–7390. https://doi.org/10.1016/j.vaccine.2017.10.011.
[37]
Hyman, P., 2019. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12. https://doi.org/10.3390/ph12010035.
[38]
Jiang, L., Y. Jiang, W. Liu, R. Zheng, and C. Li. 2022. Characterization of the Lytic phage flora with a broad host range against multidrug-resistant escherichia coli and evaluation of its efficacy against E. coli biofilm formation. Frontiers in Veterinary Science 9: 906973. https://doi.org/10.3389/fvets.2022.906973.
[39]
Jonczyk, E., M. Klak, R. Miedzybrodzki, and A. Gorski. 2011. The influence of external factors on bacteriophages–review. Folia Microbiologia (Praha) 56: 191–200. https://doi.org/10.1007/s12223-011-0039-8.
[40]
Kaczorowska, J., Casey, E., Lugli, G.A., Ventura, M., Clarke, D.J., van Sinderen, D., and J. Mahony. 2021. In vitro and in vivo assessment of the potential of escherichia coli phages to treat infections and survive gastric conditions. Microorganisms 9. https://doi.org/10.3390/microorganisms9091869.
[41]
Kim, U., J.H. Kim, and S.W. Oh. 2022. Review of multi-species biofilm formation from foodborne pathogens: Multi-species biofilms and removal methodology. Critical Reviews in Food Science and Nutrition 62: 5783–5793. https://doi.org/10.1080/10408398.2021.1892585.
[42]
Krut, O., and I. Bekeredjian-Ding. 2018. Contribution of the immune response to phage therapy. The Journal of Immunology 200: 3037–3044. https://doi.org/10.4049/jimmunol.1701745.
[43]
Levin-Reisman, I., I. Ronin, O. Gefen, I. Braniss, N. Shoresh, and N.Q. Balaban. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355: 826–830. https://doi.org/10.1126/science.aaj2191.
[44]
Lewis, K. 2020. The science of antibiotic discovery. Cell 181: 29–45. https://doi.org/10.1016/j.cell.2020.02.056.
[45]
Li, X., Y. He, Z. Wang, J. Wei, T. Hu, J. Si, G. Tao, L. Zhang, L. Xie, A.E. Abdalla, et al. 2021. A combination therapy of Phages and Antibiotics: Two is better than one. International Journal of Biological Sciences 17: 3573–3582. https://doi.org/10.7150/ijbs.60551.
[46]
Li, F., L. Li, Y. Zhang, S. Bai, L. Sun, J. Guan, W. Zhang, X. Cui, J. Feng, and Y. Tong. 2022. Isolation and characterization of the novel bacteriophage vB_SmaS_BUCT626 against Stenotrophomonas maltophilia. Virus Genes 58: 458–466. https://doi.org/10.1007/s11262-022-01917-5.
[47]
Li, Y., M. Pu, P. Han, M. Li, X. An, L. Song, H. Fan, Z. Chen, and Y. Tong. 2023. Efficacy in galleria mellonella larvae and application potential assessment of a new bacteriophage BUCT700 extensively lyse stenotrophomonas maltophilia. Microbiology Spectrum 11: e0403022. https://doi.org/10.1128/spectrum.04030-22.
[48]
Litt, P.K., and D. Jaroni. 2017. Isolation and physiomorphological characterization of escherichia coli O157:H7-infecting bacteriophages recovered from beef cattle operations. International Journal of Microbiology 2017: 7013236. https://doi.org/10.1155/2017/7013236.
[49]
Liu, B., D. Zheng, S. Zhou, L. Chen, and J. Yang. 2022. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Research 50: D912–D917. https://doi.org/10.1093/nar/gkab1107.
[50]
Lowe, T.M., and P.P. Chan. 2016. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research 44: W54–57. https://doi.org/10.1093/nar/gkw413.
[51]
Lu, T., Moxley, R.A., and W. Zhang. 2019. Mapping the neutralizing epitopes of enterotoxigenic escherichia coli K88 (F4) fimbrial adhesin and major subunit FaeG. Applied and Environmental Microbiology 85. https://doi.org/10.1128/aem.00329-19.
[52]
Manohar, P., A.J. Tamhankar, C.S. Lundborg, and N. Ramesh. 2018. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One1 13: e0206278. https://doi.org/10.1371/journal.pone.0206278.
[53]
McDougall, D.L., C.D. Soutar, B.J. Perry, C. Brown, D. Alexander, C.K. Yost, and J. Stavrinides. 2020. Isolation and characterization of vB_PagP-SK1, a T7-Like phage infecting Pantoea agglomerans. Phage (new Rochelle) 1: 45–56. https://doi.org/10.1089/phage.2019.0012.
[54]
Moghadam, M.T., N. Amirmozafari, A. Shariati, M. Hallajzadeh, S. Mirkalantari, A. Khoshbayan, and F.M. Jazi. 2020. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infection and Drug Resistance 13: 45–61. https://doi.org/10.2147/Idr.S234353.
[55]
Mohammadi, M., M. Saffari, and S.D. Siadat. 2023. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiologia (praha) 68: 357–368. https://doi.org/10.1007/s12223-023-01046-y.
[56]
Nobrega, F.L., M. Vlot, P.A. de Jonge, L.L. Dreesens, H.J.E. Beaumont, R. Lavigne, B.E. Dutilh, and S.J.J. Brouns. 2018. Targeting mechanisms of tailed bacteriophages. Nature Reviews Microbiology 16 (12): 760–773. https://doi.org/10.1038/s41579-018-0070-8.
[57]
Oechslin, F., 2018. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10. https://doi.org/10.3390/v10070351.
[58]
Ooi, M.L., A.J. Drilling, S. Morales, S. Fong, S. Moraitis, L. Macias-Valle, S. Vreugde, A.J. Psaltis, and P.J. Wormald. 2019. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to staphylococcus aureus. Jama Otolaryngology 145: 723–729. https://doi.org/10.1001/jamaoto.2019.1191.
[59]
Overbeek, R., R. Olson, G.D. Pusch, G.J. Olsen, J.J. Davis, T. Disz, R.A. Edwards, S. Gerdes, B. Parrello, M. Shukla, et al. 2014. The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research 42: D206–214. https://doi.org/10.1093/nar/gkt1226.
[60]
Peeters, E., H.J. Nelis, and T. Coenye. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. Journal of Microbiol Methods 72: 157–165. https://doi.org/10.1016/j.mimet.2007.11.010.
[61]
Popescu, M., J.D. Van Belleghem, A. Khosravi, and P.L. Bollyky. 2021. Bacteriophages and the immune system. Annual Review of Virology 8: 415–435. https://doi.org/10.1146/annurev-virology-091919-074551.
[62]
Prazak, J., L.G. Valente, M. Iten, L. Federer, D. Grandgirard, S. Soto, G. Resch, S.L. Leib, S.M. Jakob, M. Haenggi, et al. 2022. Benefits of aerosolized phages for the treatment of pneumonia due to methicillin-resistant staphylococcus aureus: an experimental study in rats. Journal of Infectious Diseases 225: 1452–1459. https://doi.org/10.1093/infdis/jiab112.
[63]
Prjibelski, A., D. Antipov, D. Meleshko, A. Lapidus, and A. Korobeynikov. 2020. Using spades de novo assembler. Current Protocols in Bioinformatics 70: e102. https://doi.org/10.1002/cpbi.102.
[64]
Richter, M., R. Rossello-Mora, F. Oliver Glockner, and J. Peplies. 2016. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929–931. https://doi.org/10.1093/bioinformatics/btv681.
[65]
Roy, R., M. Tiwari, G. Donelli, and V. Tiwari. 2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9: 522–554. https://doi.org/10.1080/21505594.2017.1313372.
[66]
Sheehan, G., A. Margalit, D. Sheehan, and K. Kavanagh. 2021. Proteomic profiling of bacterial and fungal induced immune priming in Galleria mellonella larvae. Journal of Insect Physiology 131: 104213. https://doi.org/10.1016/j.jinsphys.2021.104213.
[67]
Shi, Y., Y. Peng, Y. Zhang, Y. Chen, C. Zhang, X. Luo, Y. Chen, Z. Yuan, J. Chen, and Y. Gong. 2021. Safety and efficacy of a Phage, kpssk3, in an in vivo model of carbapenem-resistant hypermucoviscous klebsiella pneumoniae bacteremia. Frontiers in Microbiology 12: 613356. https://doi.org/10.3389/fmicb.2021.613356.
[68]
Simpson, D.J., Sacher, J.C., and Szymanski, C.M., 2016. Development of an assay for the identification of receptor binding proteins from bacteriophages. Viruses 8. https://doi.org/10.3390/v8010017.
[69]
Soontarach, R., O.F. Nwabor, and S.P. Voravuthikunchai. 2022. Interaction of lytic phage T1245 with antibiotics for enhancement of antibacterial and anti-biofilm efficacy against multidrug-resistant Acinetobacter baumannii. Biofouling 38: 994–1005. https://doi.org/10.1080/08927014.2022.2163479.
[70]
Sullivan, M.J., N.K. Petty, and S.A. Beatson. 2011. Easyfig: A genome comparison visualizer. Bioinformatics 27: 1009–1010. https://doi.org/10.1093/bioinformatics/btr039.
[71]
Van Belleghem, J.D., Clement, F., Merabishvili, M., Lavigne, R., and M. Vaneechoutte. 2017. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Scientific Reports-Uk 7. https://doi.org/10.1038/s41598-017-08336-9.
[72]
Wang, L., T. Tkhilaishvili, B. Bernal Andres, A. Trampuz, and M. Gonzalez Moreno. 2020. Bacteriophage-antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. International Journal of Antimicrobial Agents 56: 106200. https://doi.org/10.1016/j.ijantimicag.2020.106200.
[73]
Waters, E.M., D.R. Neill, B. Kaman, J.S. Sahota, M.R.J. Clokie, C. Winstanley, and A. Kadioglu. 2017. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72: 666–667. https://doi.org/10.1136/thoraxjnl-2016-209265.
[74]
Wu, G., and Y. Yi. 2016. Haemocoel injection of PirA(1)B(1) to Galleria mellonella larvae leads to disruption of the haemocyte immune functions. Science and Reports 6: 34996. https://doi.org/10.1038/srep34996.
[75]
Wu, G., Z. Zhao, C. Liu, and L. Qiu. 2014. Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. Journal of Economic Entomology 107: 559–569. https://doi.org/10.1603/ec13455.
[76]
Wu, G., Y. Yi, Y. Lv, M. Li, J. Wang, and L. Qiu. 2015. The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae. Journal of Invertebrate Pathology 127: 63–72. https://doi.org/10.1016/j.jip.2015.03.007.
[77]
Wu, G., Y. Yi, J. Sun, M. Li, and L. Qiu. 2015. No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA2B2 from Photorhabdus luminescens TT01: An association with the inhibition of the host cellular immunity. Vaccine 33: 6307–6313. https://doi.org/10.1016/j.vaccine.2015.09.046.
[78]
Wu, G., L. Xu, and Y. Yi. 2016. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Immunology Letters 174: 45–52. https://doi.org/10.1016/j.imlet.2016.04.013.
[79]
Xu, Y., X. Yu, Y. Gu, X. Huang, G. Liu, and X. Liu. 2018. Characterization and genomic study of phage vB_EcoS-B2 infecting multidrug-resistant escherichia coli. Frontiers in Microbiology 9: 793. https://doi.org/10.3389/fmicb.2018.00793.
[80]
Yin, S., G. Huang, Y. Zhang, B. Jiang, Z. Yang, Z. Dong, B. You, Z. Yuan, F. Hu, Y. Zhao, and Y. Peng. 2017. Phage Abp1 rescues human cells and mice from infection by pan-drug resistant acinetobacter baumannii. Cellular Physiology and Biochemistry 44: 2337–2345. https://doi.org/10.1159/000486117.
[81]
Zalis, E.A., Nuxoll, A.S., Manuse, S., Clair, G., Radlinski, L.C., Conlon, B.P., Adkins, J., and Lewis, K., 2019. Stochastic variation in expression of the tricarboxylic acid cycle produces persister cells. mBio 10. https://doi.org/10.1128/mBio.01930-19.
Funding
The National Program on Key Research Project of China(2021YFD1800300); The Yingzi Tech & Huazhong Agricultural University Intelligent Research Institute of Food Health(IRIFH202301)
PDF

Accesses

Citations

Detail

Sections
Recommended

/