Identification of novel serological agents for porcine deltacoronavirus infection based on the immunogenic accessory protein NS6

Yali Li1,2, Fangshu Shi2, Lingxiang Cao3, Qiankun Zheng4, Yaoyu Feng1, Bin Wang1, Yaowei Huang2()()

PDF
Animal Diseases ›› 2024, Vol. 4 ›› Issue (1) : 3. DOI: 10.1186/s44149-023-00109-4
Original Article

Identification of novel serological agents for porcine deltacoronavirus infection based on the immunogenic accessory protein NS6

  • Yali Li1,2, Fangshu Shi2, Lingxiang Cao3, Qiankun Zheng4, Yaoyu Feng1, Bin Wang1, Yaowei Huang2()()
Author information +
History +

Abstract

Porcine deltacoronavirus (PDCoV) is a swine enteropathogenic CoV that causes severe vomiting, diarrhea and dehydration in suckling piglets, leading to economic losses in the swine industry. There is a great need for a convenient method to detect circulating antibodies and help in accurate diagnosis and disease control. Previously, we demonstrated that a unique PDCoV accessory protein, NS6, is expressed during PDCoV infection in pigs and is incorporated into PDCoV virions; thus, we deduced that NS6 is likely an immunogenic target that can be used for the diagnosis of PDCoV infection. In this study, we first confirmed that NS6 is immunogenic in PDCoV-infected pigs by performing a serum western blot. Furthermore, we developed a novel NS6-based indirect enzyme-linked immunosorbent assay (iELISA) method and compared it to an established S1-based iELISA for the survey of anti-PDCoV IgG or IgA in pigs of different ages in China. The NS6-iELISA has high specificity for the detection of IgG antibodies and no cross-reactivity with other porcine enteric CoVs (transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, or swine acute diarrhea syndrome coronavirus). This NS6 serology-based method has great sensitivity and good repeatability, making it a new and cost-saving option for the rapid diagnosis and immunosurveillance of PDCoV, which may also be important for the prevention and control of deltacoronavirus-related infection in pigs and other animals.

Keywords

Coronavirus / Porcine deltacoronavirus (PDCoV) / NS6 / ELISA / Serology / IgG

Cite this article

Download citation ▾
Yali Li, Fangshu Shi, Lingxiang Cao, Qiankun Zheng, Yaoyu Feng, Bin Wang, Yaowei Huang. Identification of novel serological agents for porcine deltacoronavirus infection based on the immunogenic accessory protein NS6. Animal Diseases, 2024, 4(1): 3 https://doi.org/10.1186/s44149-023-00109-4

References

[1]
Chen, Q., P. Gauger, M. Stafne, J. Thomas, P. Arruda, E. Burrough, D. Madson, J. Brodie, D. Magstadt, R. Derscheid, M. Welch, and J.Q. Zhang. 2015. Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets. Virology 482: 51–59. https://doi.org/10.1016/j.virol.2015.03.024.
[2]
Dong, N., L.R. Fang, S.L. Zeng, Q.Q. Sun, H.C. Chen, and S.B. Xiao. 2015. Porcine deltacoronavirus in Mainland China. Emerging Infectious Diseases 21 (12): 2254–2255. https://doi.org/10.3201/eid2112.150283.
[3]
Fang, P., L. Fang, X. Liu, Y. Hong, Y. Wang, N. Dong, P. Ma, J. Bi, D. Wang, and S. Xiao. 2016. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6. Virology 499: 170–177. https://doi.org/10.1016/j.virol.2016.09.015.
[4]
Fang, P.X., L.R. Fang, Y.Y. Hong, X.R. Liu, N. Dong, P.P. Ma, J. Bi, D. Wang, and S.B. Xiao. 2017. Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. Journal of General Virology 98 (2): 173–178. https://doi.org/10.1099/jgv.0.000690.
[5]
Fang, P.X., L.R. Fang, J. Ren, Y.Y. Hong, X.R. Liu, Y.Y. Zhao, D. Wang, G.Q. Peng, and S.B. Xiao. 2018. Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA. Journal of Virology 92 (15): e00712–00718. https://doi.org/10.1128/JVI.00712-18.
[6]
Hu, H., K. Jung, A.N. Vlasova, and L.J. Saif. 2016. Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22. Archives of Virology 161 (12): 3421–3434. https://doi.org/10.1007/s00705-016-3056-8.
[7]
Huang, Y.W., A.W. Dickerman, P. Pineyro, L. Li, L. Fang, R. Kiehne, T. Opriessnig, and X.J. Meng. 2013. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. Mbio 4 (5): e00737–e713. https://doi.org/10.1128/mBio.00737-13.
[8]
Jung, K., H. Hu, and L.J. Saif. 2016. Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis. Virus Research 226: 50–59. https://doi.org/10.1016/j.virusres.2016.04.009.
[9]
Lau, S.K.P., E.Y.M. Wong, C.C. Tsang, S.S. Ahmed, R.K.H. Au-Yeung, K.Y. Yuen, U. Wernery, and P.C.Y. Woo. 2018. Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. Journal of Virology 92 (15): e00265–e218. https://doi.org/10.1128/JVI.00265-18.
[10]
Lee, S., and C. Lee. 2014. Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014. Genome Announcements 2 (6): e01191–e1114. https://doi.org/10.1128/genomeA.01191-14.
[11]
Lei, X.M., Y.L. Yang, Y.Q. He, L. Peng, P. Zhao, S.Y. Xu, H. Cao, P. Fang, W. Qiu, P. Qin, B. Wang, and Y.W. Huang. 2019. Specific recombinant proteins of porcine epidemic diarrhea virus are immunogenic, revealing their potential use as diagnostic markers. Veterinary Microbiology 236: 108387. https://doi.org/10.1016/j.vetmic.2019.108387.
[12]
Li, G., Q. Chen, K.M. Harmon, K.J. Yoon, K.J. Schwartz, M.J. Hoogland, P.C. Gauger, R.G. Main, and J. Zhang. 2014. Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734. Genome Announcements 2 (2): e00278–e214. https://doi.org/10.1128/genomeA.00278-14.
[13]
Liang, Q., H. Zhang, B. Li, Q. Ding, Y. Wang, W. Gao, D. Guo, Z. Wei, and H. Hu. 2019. Susceptibility of chickens to porcine deltacoronavirus infection. Viruses 11 (6): 573. https://doi.org/10.3390/v11060573.
[14]
Liang, Q.Z., B. Wang, C.M. Ji, F. Hu, P. Qin, Y. Feng, Y.D. Tang, and Y.W. Huang. 2023. Chicken or porcine aminopeptidase n mediates cellular entry of pseudoviruses carrying spike glycoprotein from the avian deltacoronaviruses HKU11, HKU13, and HKU17. Journal of Virology 97 (2): e0194722. https://doi.org/10.1128/jvi.01947-22.
[15]
Lin, C.M., X. Gao, T. Oka, A.N. Vlasova, M.A. Esseili, Q.H. Wang, and L.J. Saif. 2015. Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains. Journal of Virology 89 (6): 3332–3342. https://doi.org/10.1128/JVI.03196-14.
[16]
Liu, Y., B. Wang, Q.Z. Liang, F.S. Shi, C.M. Ji, X.L. Yang, Y.L. Yang, P. Qin, R. Chen, and Y.W. Huang. 2021. Roles of two major domains of the porcine deltacoronavirus S1 Subunit in receptor binding and neutralization. Journal of Virology 95 (24): e0111821. https://doi.org/10.1128/JVI.01118-21.
[17]
Lorsirigool, A., K. Saeng-chuto, G. Temeeyasen, A. Madapong, T. Tripipat, M. Wegner, A. Tuntituvanont, M. Intrakamhaeng, and D. Nilubol. 2016. The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR. Archives of Virology 161 (10): 2909–2911. https://doi.org/10.1007/s00705-016-2983-8.
[18]
Lu, M., Q. Liu, X. Wang, J. Zhang, X. Zhang, D. Shi, J. Liu, H. Shi, J. Chen, and L. Feng. 2020. Development of an indirect ELISA for detecting porcine deltacoronavirus IgA antibodies. Archives of Virology 165 (4): 845–851. https://doi.org/10.1007/s00705-020-04541-6.
[19]
Luo, S.X., J.H. Fan, T. Opriessnig, J.M. Di, B.J. Liu, and Y.Z. Zuo. 2017. Development and application of a recombinant M protein-based indirect ELISA for the detection of porcine deltacoronavirus IgG antibodies. Journal of Virological Methods 249: 76–78. https://doi.org/10.1016/j.jviromet.2017.08.020.
[20]
Ma, Y.M., Y. Zhang, X.Y. Liang, F.F. Lou, M. Oglesbee, S. Krakowka, and J.R. Li. 2015. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. Mbio 6 (2): e00064–e15. https://doi.org/10.1128/mBio.00064-15.
[21]
Ma, Y.M., Y. Zhang, X.Y. Liang, M. Oglesbee, S. Krakowka, A. Niehaus, G.P. Wang, A.Q. Jia, H.H. Song, and J.R. Li. 2016. Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus. Veterinary Microbiology 186: 90–96. https://doi.org/10.1016/j.vetmic.2016.02.004.
[22]
Marthaler, D., Y. Jiang, J. Collins, and K. Rossow. 2014. Complete genome sequence of strain SDCV/USA/Illinois121/2014, a porcine deltacoronavirus from the United States. Genome Announcements 2 (2): e00218–e214. https://doi.org/10.1128/genomeA.00218-14.
[23]
Pan, Y., X. Tian, P. Qin, B. Wang, P. Zhao, Y.L. Yang, L. Wang, D. Wang, Y. Song, X. Zhang, and Y.W. Huang. 2017. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Veterinary Microbiology 211: 15–21. https://doi.org/10.1016/j.vetmic.2017.09.020.
[24]
Peng, P., Gao, Y., Zhou, Q., Jiang, T., Zheng, S., Huang, M., Xue, C., Cao, Y., Xu, Z., 2021. Development of an indirect ELISA for detecting swine acute diarrhea syndrome coronavirus IgG antibodies based on a recombinant spike protein. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.14196.
[25]
Qin, P., H. Li, J.W. Wang, B. Wang, R.H. Xie, H. Xu, L.Y. Zhao, L. Li, Y. Pan, Y. Song, and Y.W. Huang. 2017. Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and seroepidemiological survey of MRV3 in diarrheic pigs from east China. Veterinary Microbiology 208: 126–136. https://doi.org/10.1016/j.vetmic.2017.07.021.
[26]
Qin, P., W.T. Luo, Q. Su, P.W. Zhao, Y.Q. Zhang, B. Wang, Y.L. Yang, and Y.W. Huang. 2021a. The porcine deltacoronavirus accessory protein NS6 is expressed in vivo and incorporated into virions. Virology 556: 1–8. https://doi.org/10.1016/j.virol.2021.01.011.
[27]
Qin, P., Yang, Y.L., Hu, Z.M., Zhang, Y.Q., Mei, X.Q., Liang, Q.Z., Lu, Z., Wang, B., Chen, R., Huang, Y.W., 2021b. A novel spike subunit 1-based enzyme-linked immunosorbent assay reveals widespread porcine torovirus infection in eastern China. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.14026.
[28]
Su, M., C. Li, D. Guo, S. Wei, X. Wang, Y. Geng, S. Yao, J. Gao, E. Wang, X. Zhao, Z. Wang, J. Wang, R. Wu, L. Feng, and D. Sun. 2016. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus. The Journal of Veterinary Medical Science 78 (4): 601–606. https://doi.org/10.1292/jvms.15-0533.
[29]
Suzuki, T., J. Hayakawa, and S. Ohashi. 2017. Complete genome characterization of the porcine deltacoronavirus HKD/JPN/2016, isolated in Japan, 2016. Microbiol Resour Ann 5 (34): e00795–e717. https://doi.org/10.1128/genomeA.00795-17.
[30]
Thachil, A., P.F. Gerber, C.T. Xiao, Y.W. Huang, and T. Opriessnig. 2015. Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies. PLoS ONE 10 (4): e0124363. https://doi.org/10.1371/journal.pone.0124363.
[31]
Wang, L.Y., B. Byrum, and Y. Zhang. 2014. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014. Emerging Infectious Diseases 20 (7): 1227–1230. https://doi.org/10.3201/eid2007.140296.
[32]
Wang, Y.W., H. Yue, W. Fang, and Y.W. Huang. 2015. Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from mainland China. Genome Announcements 3 (5): e00945–e915. https://doi.org/10.1128/genomeA.00945-15.
[33]
Wang, B., Y. Liu, C.M. Ji, Y.L. Yang, Q.Z. Liang, P. Zhao, L.D. Xu, X.M. Lei, W.T. Luo, P. Qin, J. Zhou, and Y.W. Huang. 2018. Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry. Journal of Virology 92 (12): e00318–00318. https://doi.org/10.1128/JVI.00318-18.
[34]
Wang, J., X. Lei, P. Qin, P. Zhao, B. Wang, Y. Wang, Y. Li, H. Jin, L. Li, and Y.W. Huang. 2017. Development and application of real-time RT-PCR and S1 protein-based indirect ELISA for porcine deltacoronavirus. Chinese journal of biotechnology 33 (8): 1265–1275. https://doi.org/10.13345/j.cjb.170119.
[35]
Woo, P.C., S.K. Lau, C.S. Lam, C.C. Lau, A.K. Tsang, J.H. Lau, R. Bai, J.L. Teng, C.C. Tsang, M. Wang, B.J. Zheng, K.H. Chan, and K.Y. Yuen. 2012. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology 86 (7): 3995–4008. https://doi.org/10.1128/JVI.06540-11.
[36]
Zhang, J.Q. 2016. Porcine deltacoronavirus: overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Research 226: 71–84. https://doi.org/10.1016/j.virusres.2016.05.028.
[37]
Zhang, M., W. Li, P. Zhou, D. Liu, R. Luo, A. Jongkaewwattana, and Q. He. 2020. Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design. Emerging Microbes & Infections 9 (1): 20–31. https://doi.org/10.1080/22221751.2019.1701391.
[38]
Zhou, Z., Y. Qiu, and X. Ge. 2021. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. Animal Diseases 1 (1): 5. https://doi.org/10.1186/s44149-021-00005-9.
Funding
Zhejiang Provincial Natural Science Foundation(LZ22C180002); Laboratory of Lingnan Modern Agriculture Project(NG2022001); Key Research and Development Program of Zhejiang Province(2021C02049)
PDF

Accesses

Citations

Detail

Sections
Recommended

/