Biomedical knowledge graph construction of Sus scrofaand its application in anti-PRRSV traditional Chinese medicine discovery

Mingyang Cui1, Zhigang Hao2, Yanguang Liu1, Bomin Lv1, Hongyu Zhang1, Yuan Quan1(), Li Qin2()

PDF
Animal Disease ›› 2024, Vol. 4 ›› Issue (1) : 2. DOI: 10.1186/s44149-023-00106-7

Biomedical knowledge graph construction of Sus scrofaand its application in anti-PRRSV traditional Chinese medicine discovery

  • Mingyang Cui1, Zhigang Hao2, Yanguang Liu1, Bomin Lv1, Hongyu Zhang1, Yuan Quan1(), Li Qin2()
Author information +
History +

Abstract

As a new data management paradigm, knowledge graphs can integrate multiple data sources and achieve quick responses, reasoning and better predictions in drug discovery. Characterized by powerful contagion and a high rate of morbidity and mortality, porcine reproductive and respiratory syndrome (PRRS) is a common infectious disease in the global swine industry that causes economically great losses. Traditional Chinese medicine (TCM) has advantages in low adverse effects and a relatively affordable cost of application, and TCM is therefore conceived as a possibility to treat PRRS under the current circumstance that there is a lack of safe and effective approaches. Here, we constructed a knowledge graph containing common biomedical data from humans and Sus Scrofaas well as information from thousands of TCMs. Subsequently, we validated the effectiveness of the Sus Scrofaknowledge graph by the t-SNE algorithm and selected the optimal model (i.e., transR) from six typical models, namely, transE, transR, DistMult, ComplEx, RESCAL and RotatE, according to five indicators, namely, MRR, MR, HITS@1, HITS@3 and HITS@10. Based on embedding vectors trained by the optimal model, anti-PRRSV TCMs were predicted by two paths, namely, VHC-Herb and VHPC-Herb, and potential anti-PRRSV TCMs were identified by retrieving the HERB database according to the pharmacological properties corresponding to symptoms of PRRS. Ultimately, Dan Shen's ( Salvia miltiorrhiza Bunge) capacity to resist PRRSV infection was validated by a cell experiment in which the inhibition rate of PRRSV exceeded 90% when the concentrations of Dan Shen extract were 0.004, 0.008, 0.016 and 0.032 mg/mL. In summary, this is the first report on the Sus Scrofaknowledge graph including TCM information, and our study reflects the important application values of deep learning on graphs in the swine industry as well as providing accessible TCM resources for PRRS.

Keywords

Knowledge graph / Porcine reproductive and respiratory syndrome / Traditional Chinese medicine / Biomedical data / Deep learning

Cite this article

Download citation ▾
Mingyang Cui, Zhigang Hao, Yanguang Liu, Bomin Lv, Hongyu Zhang, Yuan Quan, Li Qin. Biomedical knowledge graph construction of Sus scrofaand its application in anti-PRRSV traditional Chinese medicine discovery. Animal Disease, 2024, 4(1): 2 https://doi.org/10.1186/s44149-023-00106-7

References

[1]
Abdallah, A., P. Zhang, Q.Z. Zhong, and Z.W. Sun. 2019. Application of traditional chinese herbal medicine byproducts as dietary feed supplements and antibiotic replacements in animal production. Current Drug Metabolism 20 (1): 54–64. https://doi.org/10.2174/1389200219666180523102920.
[2]
Baron, T., E. Albina, Y. Leforban, F. Madec, H. Guilmoto, J. Plana Duran, and P. Vannier. 1992. Report on the first outbreaks of the porcine reproductive and respiratory syndrome (PRRS) in France. Diagnosis and viral isolation. Annales de recherches vétérinaires 23 (2): 161–166.
[3]
Bonner, S., I.P. Barrett, C. Ye, R. Swiers, O. Engkvist, A. Bender, C.T. Hoyt, and W.L. Hamilton. 2022. A review of biomedical datasets relating to drug discovery: a knowledge graph perspective. Briefings in Bioinformatics 23 (6): bbac404. https://doi.org/10.5555/2999792.2999923.
[4]
Bordes A, N. Usunier, A. García-Durán, J. Weston, O. Yakhnenko. 2013. Translating embeddings for modeling multirelational data. In: Proc. Of the 26th Int’l Conf. on Neural Information Processing Systems (NIPS). Lake Tahoe. 2:2787–2795. https://doi.org/10.5555/2999792.2999923.
[5]
Chang, C.C., W.B. Chung, M.W. Lin, C.N. Weng, P.C. Yang, Y.T. Chiu, and R.M. Chu. 1993. Porcine reproductive and respiratory syndrome (PRRS) in Taiwan. I. Viral isolation. Journal of the Chinese Society of Veterinary Science 19: 268–276.
[6]
Chen, X.J., S.B. Jia, and Y. Xiang. 2020. A review: Knowledge reasoning over knowledge graph. Expert Systems with Applications 141: 112948. https://doi.org/10.1016/j.eswa.2019.112948.
[7]
Cho, J.G., and S.A. Dee. 2006. Porcine reproductive and respiratory syndrome virus. Theriogenology 66 (3): 655–662. https://doi.org/10.1016/j.theriogenology.2006.04.024.
[8]
Cui, W.Q., F. Yu, Y.F. Zhang, X. Han, R.F. Zou, Y.D. Tang, L.G. Wang, N. Eliphaz, J. Wang, S.G. Yuan, X.H. Cai, and Y.H. Li. 2021. Discovery of traditional Chinese medicines against porcine reproductive and respiratory syndrome virus. Pharmacological Research - Modern Chinese Medicine 1: 100003.https://doi.org/10.1016/j.prmcm.2021.100003.
[9]
Dokland, T. 2010. The structural biology of PRRSV. Virus Research 154 (1–2): 86–97. https://doi.org/10.1016/j.virusres.2010.07.029.
[10]
Fang, S.S., L. Dong, L. Liu, J.C. Guo, L.H. Zhao, J.Y. Zhang, D.C. Bu, X.K. Liu, P.P. Huo, W.C. Cao, et al. 2021. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Research 49 (D1): D1197–D1206. https://doi.org/10.1093/nar/gkaa1063.
[11]
Gong, J., F. Yin, Y. Hou, and Y. Yin. 2014. Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: potential and challenges in application. Canadian Journal of Animal Science 94: 223–241. https://doi.org/10.4141/CJAS2013-144.
[12]
Hogan, A., E. Blomqvist, M. Cochez, C. d'Amato, G. de Melo, C. Gutierrez, J.E.L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, et al. 2021. Knowledge Graphs. ACM Computing Surveys. 54(4): 71:1-71:37. https://doi.org/10.1145/3447772.
[13]
Holman, D.B., and M.R. Chénier. 2015. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian Journal of Microbiology 61 (11): 785–798. https://doi.org/10.1139/cjm-2015-0239.
[14]
Hsu, S.C., and J.G. Chung. 2012. Anticancer potential of emodin. Biomedicine (Taipei) 2 (3): 108–116. https://doi.org/10.1016/j.biomed.2012.03.003.
[15]
Huang, L., D.L. Xie, Y.R. Yu, H.L. Liu, Y. Shi, T.L. Shi, and C.P. Wen. 2018. TCMID comprehensive resource for TCM. Nucleic Acids Research 46 (D1): D1117–D1120. https://doi.org/10.1093/nar/gkx1028.
[16]
Jia, Q., R. Zhu, Y. Tian, B. Chen, R. Li, L. Li, L. Wang, Y. Che, D. Zhao, F. Mo, S. Gao, and D. Zhang. 2019. Salvia miltiorrhiza in diabetes: a review of its pharmacology, phytochemistry, and safety. Phytomedicine 58: 152871. https://doi.org/10.1016/j.phymed.2019.152871.
[17]
Karimi, A., M. Majlesi, and M. Rafieian-Kopaei. 2015. Herbal versus synthetic drugs; beliefs and facts. Journal of Nephropharmacology 4 (1): 27–30.
[18]
Karniychuk, U.U., M. Geldhof, M. Vanhee, J. Van Doorsselaere, T.A. Saveleva, and H.J. Nauwynck. 2010. Pathogenesis and antigenic characterization of a new East European subtype 3 porcine reproductive and respiratory syndrome virus isolate. BMC Veterinary Research 6: 30. https://doi.org/10.1186/1746-6148-6-30.
[19]
Keffaber, K.K. 1989. Reproductive failure of unknown etiology. American Association of Swinem Practice Newsl 1: 1–9.
[20]
Kuhn, M., D. Szklarczyk, A. Franceschini, M. Campillos, C. von Mering, L.J. Jensen, A. Beyer, and P. Bork. 2010. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Research 38 (Database issue): D552–D556. https://doi.org/10.1093/nar/gkp937.
[21]
Kuwahara, H., T. Nunoya, M. Tajima, A. Kato, and T. Samejima. 1994. An outbreak of porcine reproductive and respiratory syndrome in Japan. Journal of Veterinary Medical Science 56 (5): 901–909. https://doi.org/10.1292/jvms.56.901.
[22]
Larmande, P., G. Tagny Ngompe, A. Venkatesan, and M. Ruiz. 2022. AgroLD: A knowledge graph database for plant functional genomics. Methods in Molecular Biology 2443: 527–540. https://doi.org/10.1007/978-1-0716-2067-0_28.
[23]
Li, Y.M., Z.C. Wu, K. Liu, P.F. Qi, J.P. Xu, J.C. Wei, B.B. Li, D.H. Shao, Y.Y. Shi, Y.F. Qiu, and Z.Y. Ma. 2017. Doxycycline enhances adsorption and inhibits early-stage replication of porcine reproductive and respiratory syndrome virus in vitro. FEMS Microbiology Letters 364 (17): fnx170. https://doi.org/10.1093/femsle/fnx170.
[24]
Lin, Y.K., Z.Y. Liu, M.S. Sun, Y. Liu, X. Zhu. 2015. Learning entity and relation embeddings for knowledge graph completion. In: Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI). Austin: AAAI Press 2181–2187. https://doi.org/10.5555/2886521.2886624.
[25]
MacLean, F. 2021. Knowledge graphs and their applications in drug discovery. Expert Opinion on Drug Discovery 16 (9): 1057–1069. https://doi.org/10.1080/17460441.2021.1910673.
[26]
Mencía-Ares, O., H. Argüello, H. Puente, M. Gómez-García, A. álvarez-Ordó?ez, E.G. Manzanilla, A. Carvajal, and P. Rubio. 2021. Effect of antimicrobial use and production system on Campylobacter spp., Staphylococcus spp. and Salmonella spp. resistance in Spanish swine: A cross-sectional study. Zoonoses Public Health 68 (1): 54–66. https://doi.org/10.1111/zph.12790.
[27]
Nickel M, V. Tresp, H.P. Kriegel. 2011.A three-way model for collective learning on multirelational data. In: Proc. of the 28th Int’l Conf. on Machine Learning (ICML). Bellevue: Omnipress 809–816. https://doi.org/10.5555/3104482.3104584.
[28]
Sha, H.Y., H. Zhang, Y. Chen, L.Z. Huang, M.M. Zhao, and N. Wang. 2022. Research progress on the NSP9 protein of porcine reproductive and respiratory syndrome virus. Frontiers in Veterinary Science 9: 872205. https://doi.org/10.3389/fvets.2022.872205.
[29]
Singhal. 2012. Introducing the knowledge graph: things, not strings. Official google blog. https://blog.google/products/search/introducing-knowledge-graph-things-not/
[30]
Snijder, E.J., M. Kikkert, and Y. Fang. 2013. Arterivirus molecular biology and pathogenesis. Journal of General Virology 94 (Pt 10): 2141–2163. https://doi.org/10.1099/vir.0.056341-0.
[31]
Soares, V.M., J.G. Pereira, F. Barreto, L. Jank, R.B. Rau, C.B. Dias Ribeiro, T. Dos Santos Castilhos, C.A. Tomaszewski, D.R. Hillesheim, R.G. Mondadori, et al. 2022. Residues of veterinary drugs in animal products commercialized in the Border Region of Brazil, Argentina, and Uruguay. Journal of Food Protection 85 (6): 980–986. https://doi.org/10.4315/JFP-21-415.
[32]
Su, C.Y., Q.L. Ming, K. Rahman, T. Han, and L.P. Qin. 2015. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chinese Journal of Natural Medicines 13 (3): 163–182. https://doi.org/10.1016/S1875-5364(15)30002-9.
[33]
Sun Z.Q., Z.H. Deng, J.Y. Nie, J. Tang. 2019. RotatE: Knowledge graph embedding by relational rotation in complex space. arXiv:1902.10197. https://doi.org/10.48550/arXiv.1902.10197
[34]
Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, and C. von Mering. 2021. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49 (D1): D605–D612. https://doi.org/10.1093/nar/gkaa1074.
[35]
Tantituvanont, A., W. Yimprasert, P. Werawatganone, and D. Nilubol. 2009. Pharmacokinetics of ceftiofur hydrochloride in pigs infected with porcine reproductive and respiratory syndrome virus. Journal of Antimicrobial Chemotherapy 63 (2): 369–373. https://doi.org/10.1093/jac/dkn496.
[36]
Trouillon T., J. Welbl, S. Riedel, é. Gaussier, G. Bouchard. 2016. Complex embeddings for simple link prediction. In: Proc. of the 33rd Int ’l Conf. on Machine Learning (ICML). New York: JMLR 48:2071–2080. https://doi.org/10.5555/3045390.3045609.
[37]
Wang, T., K. Guan, Q. Su, X. Wang, Z. Yan, K. Kuang, Y. Wang, Q. Zhang, X. Zhou, and B. Liu. 2022. Change of gut microbiota in PRRSV-Resistant Pigs and PRRSV-susceptible pigs from tongcheng pigs and large white pigs crossed population upon PRRSV infection. Animals (Basel). 12 (12): 1504. https://doi.org/10.3390/ani12121504.
[38]
Wensvoort, G., C. Terpstra, J.M. Pol, E.A. ter Laak, M. Bloemraad, E.P. de Kluyver, C. Kragten, L. van Buiten, A. den Besten, F. Wagenaar, and A. Et. 1991. Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Veterinary Quarterly 13 (3): 121–130. https://doi.org/10.1080/01652176.1991.9694296.
[39]
Yang, X.D., X.Y. Lian, C. Fu, S. Wuchty, S.P. Yang, and Z.D. Zhang. 2021. HVIDB: a comprehensive database for human-virus protein-protein interactions. Briefings in Bioinformatics 22 (2): 832–844. https://doi.org/10.1093/bib/bbaa425.
[40]
Yang, B.S., W.T. Yih, X.D. He, J.F. Gao, L. Deng. 2015. Embedding entities and relations for learning and inference in knowledge bases. arXiv:1412.6575. https://doi.org/10.48550/arXiv.1412.6575.
[41]
Yin, B.S., S.S. Qi, W.L. Sha, H.Y. Qin, L.M. Liu, J.Y. Yun, J.H. Zhu, G.J. Li, and D.B. Sun. 2021. Molecular characterization of the Nsp2 and ORF5 (ORF5a) genes of PRRSV strains in nine provinces of China during 2016–2018. Frontiers in Veterinary Science 8: 605832. https://doi.org/10.3389/fvets.2021.605832.
[42]
Zha, L.H., L.S. He, F.M. Lian, Z. Zhen, H.Y. Ji, L.P. Xu, and X.L. Tong. 2015. Clinical Strategy for Optimal Traditional Chinese Medicine (TCM) Herbal Dose Selection in Disease Therapeutics. The American Journal of Chinese Medicine 43 (8): 1515–1524. https://doi.org/10.1142/S0192415X1550086X.
[43]
Zhang, M.X., C.N. Lu, L.Z. Su, F.X. Long, X. Yang, X.F. Guo, G.P. Song, T.Q. An, W.S. Chen, and J.X. Chen. 2022. Toosendanin activates caspase-1 and induces maturation of IL-1β to inhibit type 2 porcine reproductive and respiratory syndrome virus replication via an IFI16-dependent pathway. Veterinary Research 53 (1): 61. https://doi.org/10.1186/s13567-022-01077-2.
[44]
Zheng, D., X. Song, C. Ma, Z.Y. Tan, Z.H. Ye, J. Dong, H. Xiong, Z. Zhang, G. Karypis. 2020. DGL-KE: Training knowledge graph embeddings at scale. arXiv: 2004.08532. https://doi.org/10.48550/arXiv.2004.08532.
Funding
Fundamental Research Funds for the Central Universities(2662023XXPY005)
PDF

Accesses

Citations

Detail

Sections
Recommended

/