Background: Osteoarthritis (OA) is a common joint disease, and existing drugs cannot cure OA, so there is an urgent need to identify new targets. Mitophagy plays an important role in OA; however, the role of mitophagy in the OA immune system is not yet clear.
Methods: In this study, differential analysis and enrichment analysis were used to identify mitophagy-related genes (MRGs) with differential expression in OA and the functional pathways involved in OA. Subsequently, two machine learning methods, RF and LASSO, were used to screen MRGs with diagnostic value and construct nomograms. At the same time, the relationship between mitophagy and OA immune response was explored by immunoinfiltration analysis.
Results: Forty-three differentially MRGs were identified in OA, of which six MRGs (GABARAPL2, PARL, GABARAPL1, JUN, RRAS, and SNX7) were associated with the diagnosis of OA. The ROC analysis results show that these 6 MRGs have high predictive accuracy in the diagnosis of OA. In immune infiltration analysis, we found that the abundance of significantly different immune cells in OA was mostly upregulated. In addition, the expression of diagnostic-related MRGs is correlated with changes in the abundance of immune cells in OA.
Conclusion: This study demonstrates that six MRGs can be used as diagnostic biomarkers. The expression of diagnostic-related MRGs is correlated with changes in the abundance of immune cells in OA. At the same time, mitophagy may affect the immune microenvironment of OA by regulating immune cells, ultimately leading to the progression of OA.
Background: Native cartilage has low capacity for regeneration because it has very few progenitor cells. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and human umbilical cord-derived MSCs (hUC-MSCs) have been employed as promising sources of stem cells for cartilage injury repair. Reproduction of hyaline cartilage from MSCs remains a challenging endeavor. The paracrine factors secreted by chondrocytes possess the capability to induce chondrogenesis from MSCs.
Methods: The conditioned medium derived from chondrocytes was utilized to induce chondrogenic differentiation of hUCB-MSCs and hUC-MSCs. The expression levels of collagen type I alpha 1 chain (Col1a1), collagen type II alpha 1 chain (Col2a1), and SRY-box transcription factor 9 (SOX9) were assessed through quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunofluorescence (IF) assays. To elucidate the mechanism of differentiation, the concentration of transforming growth factor-β1 (TGF-β1) in the conditioned medium of chondrocytes was quantified using enzyme-linked immunosorbent assay (ELISA). Meanwhile, the viability of cells was assessed using Cell Counting Kit-8 (CCK-8) assays.
Results: The expression levels of Col2a1 and SOX9 were found to be higher in induced hUC-MSCs compared to those in induced hUCB-MSCs. The conditioned medium of chondrocytes contained TGF-β1. The CCK-8 assays revealed that the proliferation rate of hUC-MSCs was significantly higher compared to that of hUCB-MSCs.
Conclusions: The chondrogenic potential and proliferation capacity of hUC-MSCs surpass those of hUCB-MSCs, thereby establishing hUC-MSCs as a superior source of seed cells for cartilage tissue engineering.
Background: Zinc-finger E-box-binding homeobox-1 (ZEB1) is predominantly found in type-H vessels. However, the roles of ZEB1 and type-H vessels in steroid-induced osteonecrosis of the femoral head (SONFH) are unclear.
Methods: Human femoral heads were collected to detect the expression of ZEB1 and the levels of type-H vessels. Then, the SONFH model was developed by injecting C57BL/6 mice with lipopolysaccharide and methylprednisolone. Micro-computed tomography, angiography, double calcein labeling, immunofluorescence, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting were performed to detect the expression of ZEB1, the Wnt/β-catenin pathway, type-H vessels, and the extent to which ZEB1 mediates angiogenesis and osteogenesis. Human umbilical vein endothelial cells were also used to explore the relationship between ZEB1 and the Wnt/β-catenin pathway.
Results: We found that ZEB1 expression and the formation of type-H vessels decreased in SONFH patients and in a mouse model. The number of vascular endothelial growth factors in the femoral heads also decreased. Moreover, the bone mineral density, trabecular number, mineral apposition rate, and expression of genes related to osteogenesis decreased. After ZEB1 knockdown, angiogenesis and osteogenesis decreased. However, the numbers of type-H vessels and the extent of angiogenesis and osteogenesis improved after activation of the Wnt/β-catenin pathway.
Conclusions: The ZEB1 expression decreased in SONFH, causing a decrease in type-H vessel, and it mediated angiogenesis and osteogenesis by regulating the Wnt/β-catenin pathway, ultimately accelerating the process of SONFH.
Background: The biomechanical environment created by suture-button fixation Latarjet is conducive to the healing and shaping of the transplanted coracoid, but its mechanism remains unclear. The latest research has found that the absence of stem cell chemokine (CXCL12) impeded bone regeneration in Sonic Hedgehog (SHH)-deficient animals. However, whether the biomechanical environment affects SHH and CXCL12 function has not been studied.
Methods: Rat fracture models were constructed to simulate stress environments under non-load-bearing and load-bearing conditions. The fracture healing and shaping, as well as the expression levels of SHH and CXCL12, were assessed through gross viewing, micro-computed tomography (micro-CT), and histochemical staining.
Results: Under flexible fixation, the relative bone volume (BV/TV) of rats exposed to the load-bearing stress environment was significantly higher than that of rats under a non-load-bearing stress environment (p ≤ 0.05). Adverse bone shaping was not observed in rats subjected to flexible fixation. The levels of SHH and CXCL12 in load-bearing rats exhibited significant elevation (p ≤ 0.05). Under a load-bearing stress environment, no significant difference was observed in the BV/TV between the flexible fixation group and the rigid fixation group (p ≥ 0.05), but there was excessive hyperplasia of the fracture callus in the rigid fixation group. The levels of SHH and CXCL12 in rats subjected to rigid fixation were significantly elevated (p ≤ 0.05).
Conclusions: Flexible fixation and load-bearing stress environment may contribute to bone healing and shaping by influencing the levels of SHH and CXCL12, suggested that this mechanism may be relevant to the healing and shaping of the transplanted coracoid after suture-button fixation Latarjet.
Background: A stable and standardized source of mesenchymal stem cells is a prerequisite for bone repair tissue engineering research and application. We aimed to establish a stable cell line of bone marrow mesenchymal stem cells from New Zealand rabbits and explore their osteogenic differentiation capacity.
Methods: Primary rabbit bone marrow mesenchymal stem cells (RBMSCs) were isolated and immortalized via retroviral expression of SV40 Large T antigen (LTA). To assess the osteogenic differentiation capacity of the cells in vitro, we studied the alkaline phosphatase (ALP) expression level and calcium deposition in bone morphogenetic protein 9 (BMP9)-induced immortalized cells using ALP staining and quantification, as well as alizarin red staining. Ectopic bone formation by the cells was assessed using micro-computed tomography (µCT) and histological examination.
Results: The immortalized cell line we established using SV40 LTA, which we termed iRBMSCs, was non-tumorigenic and maintained long-term proliferative activity. We further discovered that BMP9 (MOI = 30) effectively induced the osteogenic differentiation capacity of iRBMSCs in vitro, and there was a synergy with GelMA hydrogel in inducing osteogenic differentiation of the iRBMSCs in vivo.
Conclusion: We confirmed that iRBMSCs are promising as a stable cell line source for bone defect repair engineering.
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Background: Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression.
Aims: The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms.
Materials & Methods: The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles.
Results: This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis.
Conclusion: CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
Animal models have been a crucial tool in neuroscience research for decades, providing insights into the biomedical and evolutionary mechanisms of the nervous system, disease, and behavior. However, their use has raised concerns on several ethical, clinical, and scientific considerations. The welfare of animals and the 3R principles (replacement, reduction, refinement) are the focus of the ethical concerns, targeting the importance of reducing the stress and suffering of these models. Several laws and guidelines are applied and developed to protect animal rights during experimenting. Concurrently, in the clinic and biomedical fields, discussions on the relevance of animal model findings on human organisms have increased. Latest data suggest that in a considerable amount of time the animal model results are not translatable in humans, costing time and money. Alternative methods, such as in vitro (cell culture, microscopy, organoids, and micro physiological systems) techniques and in silico (computational) modeling, have emerged as potential replacements for animal models, providing more accurate data in a minimized cost. By adopting alternative methods and promoting ethical considerations in research practices, we can achieve the 3R goals while upholding our responsibility to both humans and other animals. Our goal is to present a thorough review of animal models used in neuroscience from the biomedical, evolutionary, and ethical perspectives. The novelty of this research lies in integrating diverse points of views to provide an understanding of the advantages and disadvantages of animal models in neuroscience and in discussing potential alternative methods.
Background: The continuing emergence of influenza virus has highlighted the value of public databases and related bioinformatic analysis tools in investigating transcriptomic change caused by different influenza virus infections in human and animal models.
Methods: We collected a large amount of transcriptome research data related to influenza virus-infected human and animal models in public databases (GEO and ArrayExpress), and extracted and integrated array and metadata. The gene expression matrix was generated through strictly quality control, balance, standardization, batch correction, and gene annotation. We then analyzed gene expression in different species, virus, cells/tissues or after antibody/vaccine treatment and imported sample metadata and gene expression datasets into the database.
Results: Overall, maintaining careful processing and quality control, we collected 8064 samples from 103 independent datasets, and constructed a comparative transcriptomics database of influenza virus named the Flu-CED database (Influenza comparative expression database, {L-End} https://flu.com-med.org.cn/ ). Using integrated and processed transcriptomic data, we established a user-friendly website for realizing the integration, online retrieval, visualization, and exploration of gene expression of influenza virus infection in different species and the biological functions involved in differential genes. Flu-CED can quickly query single and multi-gene expression profiles, combining different experimental conditions for comparative transcriptome analysis, identifying differentially expressed genes (DEGs) between comparison groups, and conveniently finding DEGs.
Conclusion: Flu-CED provides data resources and tools for analyzing gene expression in human and animal models infected with influenza virus that can deepen our understanding of the mechanisms underlying disease occurrence and development, and enable prediction of key genes or therapeutic targets that can be used for medical research.
Background: Species of the genus Eimeria cause coccidiosis in chickens, resulting in a huge burden to the poultry industry worldwide. Eimeria tenella is one of the most prevalent chicken coccidia in China, and E. tenella infection causes hemorrhagic cecitis.
Methods: Using an established model of coccidiosis in chickens combined with necropsy, imaging of pathological tissue sections, and other techniques, we evaluated the gross and microscopic lesions of cecal tissue within 15 days after inoculation with sporulated oocysts and described the endogenetic developmental process and relationship between E. tenella infection and enteritis development in chickens.
Results: We observed three generations of merogony and gamogony in E. tenella. We observed gross lesions in the cecum from 84 hpi (hours post inoculation) and microscopic lesions from 60 hpi. The lesions in the cecum mainly exhibited hemorrhagic enteritis. Their severity increased with the onset of the second generation of merogony. The lesions began to alleviate by the end of the endogenous stages of E. tenella.
Conclusion: We show, for the first time, the complete observation of a series of changes in enteritis caused by 5 × 103 E. tenella oocysts. This study provides reference materials for E. tenella research and pathological diagnosis.
Background: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in recent years, but the pathogenesis is not fully understood. Therefore, it is important to establish an effective animal model for studying NAFLD.
Methods: Adult zebrafish were fed a normal diet or a high-fat diet combined with egg yolk powder for 30 days. Body mass index (BMI) was measured to determine overall obesity. Serum lipids were measured using triglyceride (TG) and total cholesterol (TC) kits. Liver lipid deposition was detected by Oil Red O staining. Liver injury was assessed by measuring glutathione aminotransferase (AST) and glutamic acid aminotransferase (ALT) levels. Reactive oxygen species (ROS) and malondialdehyde (MDA) were used to evaluate oxidative damage. The level of inflammation was assessed by qRT-PCR for pro-inflammatory factors. H&E staining was used for pathological histology. Caspase-3 immunofluorescence measured apoptosis. Physiological disruption was assessed via RNA-seq analysis of genes at the transcriptional level and validated by qRT-PCR.
Results: The high-fat diet led to significant obesity in zebrafish, with elevated BMI, hepatic TC, and TG. Severe lipid deposition in the liver was observed by ORO and H&E staining, accompanied by massive steatosis and ballooning. Serum AST and ALT levels were elevated, and significant liver damage was observed. The antioxidant system in the body was severely imbalanced. Hepatocytes showed massive apoptosis. RNA-seq results indicated that several physiological processes, including endoplasmic reticulum stress, and glucolipid metabolism, were disrupted.
Conclusion: Additional feeding of egg yolk powder to adult zebrafish for 30 consecutive days can mimic the pathology of human nonalcoholic fatty liver disease.
Background: Autism and schizophrenia are environmental risk factors associated with prenatal viral infection during pregnancy. It is still unclear whether behavior phenotypes change at different developmental stages in offspring following the activation of the maternal immune system.
Methods: Sprague–Dawley rats received a single caudal vein injection of 10 mg/kg polyinosinic:polycytidylic acid (poly I:C) on gestational day 9 and the offspring were comprehensively tested for behaviors in adolescence and adulthood.
Results: Maternal serum levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α were elevated in poly I:C-treated dams. The offspring of maternal poly I:C-induced rats showed increased anxiety, impaired social approach, and progressive impaired cognitive and sensorimotor gating function.
Conclusion: Maternal immune activation led to developmental specificity behavioral impairment in offspring.
Background: Hypothyroxinemia is a subclinical thyroid hormone deficiency in which the mother has inadequate levels of T4 during pregnancy. The fetus relies entirely on the mother’s T4 hormone level for early neurodevelopment. Isolated maternal hypothyroxinemia (IMH) in the first trimester of pregnancy can lead to lower intelligence, lower motor scores, and a higher risk of mental illness in descendants. Here, we focus on the autism-like behavior of IMH offspring.
Methods: The animals were administered 1 ppm of propylthiouracil (PTU) for 9 weeks. Then, the concentrations of T3, T4, and thyroid-stimulating hormone (TSH) were detected using enzyme-linked immunosorbent assay (ELISA) to verify the developed animal model of IMH. We performed four behavioral experiments, including the marble burying test, open-field test, three-chamber sociability test, and Morris water maze, to explore the autistic-like behavior of 40-day-old offspring rats.
Results: The ELISA test showed that the serum T3 and TSH concentrations in the model group were normal compared with the negative control group, whereas the T4 concentration decreased. In the behavioral experiments, the number of hidden marbles in the offspring of IMH increased significantly, the frequency of entering the central compartment decreased, and the social ratio decreased significantly.
Conclusion: The animal model of IMH was developed by the administration of 1 ppm of PTU for 9 weeks, and there were autistic-like behavior changes such as anxiety, weakened social ability, and repeated stereotyping in the IMH offspring by 40 days.
Background: Esophageal strictures following esophageal atresia repair are a source of significant morbidity. To test new therapeutic approaches, we designed a piglet model of esophageal stricture by resecting variable lengths of esophagus with subsequent re-anastomosis. This study describes the model and validates its physiologic impact by blinded analysis of the weight gains of the piglets.
Methods: A total of 24 two-week old Pietrain piglets had esophageal resections performed, ranging from 0 to 5 cm, with the goal of inducing postoperative esophageal strictures. Postoperative body-weights were evaluated by repeated analysis of variance followed by pairwise group-comparisons based on estimated marginal means. In addition, body weight was modeled by linear-mixed model regression. Different resection lengths were compared. The esophagi were evaluated postmortem for stricture.
Results: Of 24 operated piglets, 23 reached the endpoint, and 90% developed an esophageal stricture that was radiologically visible in a contrast study, as well as appreciable macroscopically in the necropsy. We found differences in pre-and postoperative body weights for all piglets (F (1, 18) = 298.54, p < 0.001), but no differences between resection lengths (F (4, 18) = 0.36, p = 0.837).
Conclusion: Our model of postoperative esophageal stricture offers the opportunity to investigate potential treatments for strictures associated with esophageal atresia, since it reliably induces strictures and results in minimal loss of animals. The similar body weight gain in all groups indicates that stricture is mainly the result of esophageal resection and re-anastomosis, regardless of the length of the resected segment.
Background: Intestinal organoids are promising tools in the context of animal experiment reduction but a thorough characterization of the impact of the origin of intestinal stem cells (ISC) on organoid phenotype is needed to routinely use this cellular model. Our objective was to evaluate the effect of ISC donor age on the growth, morphology and cellular composition of intestinal organoids derived from pig.
Methods: Organoids were derived from jejunal and colonic ISC obtained from 1-, 7-, 28-, 36-and 180-day-old pigs and passaged three times.
Results: We first confirmed by qPCR that the expression of 18% of the >80 studied genes related to various intestinal functions differed between jejunal and colonic organoids after two passages (p < 0.05). Growth and morphology of organoids depended on intestinal location (greater number and larger organoids derived from colonic than jejunal ISC, p < 0.05) but also pig age. Indeed, when ISC were derived from young piglets, the ratio of organoids to spheroids was greater (p < 0.05), spheroids were larger during the primary culture but smaller after two passages (p < 0.05) and organoids were smaller after one passage (p > 0.05) compared to ISC from older pigs. Finally, no difference in cellular composition, evaluated by immunostaining of markers of the major intestinal cell types (absorptive, enteroendocrine and goblet cells) was observed between organoids originating from 7-or 180-day-old pigs, but differences between intestinal site origins were noticed.
Conclusion: In conclusion, while the age of the tissue donor affected organoid growth and morphology, it did not influence the phenotype.
Hypertriglyceridemia (HTG) often accompanies diabetes and is considered a risk factor for diabetic vascular complications. However, inducing diabetic HTG typically requires high-fat diets in certain animal models. Leveraging our newly developed LDL receptor knockout hamster model, which exhibits features akin to human lipid metabolism, we sought to determine whether these animals would develop HTG without dietary manipulations in diabetes. Diabetes was induced via intraperitoneal injection of STZ in wild type and heterozygous LDL receptor deficient hamsters. Blood glucose, triglyceride, and cholesterol were measured over 60 days. Plasma TG clearance was determined via olive oil gavage. The effect of insulin on diabetic HTG was assessed on Day 60 post-diabetes induction. Blood glucose increased over threefold, while plasma insulin decreased to 30% of controls after STZ injection in both wild type and heterozygous hamsters by Day 7, remaining stable for 60 days. Plasma TG in wild-type hamsters remained unchanged at Day 7 post-STZ injection but increased slightly thereafter. Conversely, heterozygous hamsters exhibited severe HTG by Day 7 until the end of the study. Olive oil gavage revealed much slower plasma triglyceride clearance in heterozygous hamsters compared to WT animals, despite significantly reduced lipoprotein lipase activity in post-heparin plasma in both animals. Hyperglycemia and HTG in heterozygous hamsters were reversed to pre-diabetic levels following intraperitoneal insulin administration. In conclusion, severe HTG in diabetic heterozygous LDL receptor deficient hamsters developed spontaneously and was insulin-dependent. Thus, this hamster model holds promise for effectively studying the complications associated with human diabetic HTG.