Establishment of immortalized rabbit bone marrow mesenchymal stem cells and a preliminary study of their osteogenic differentiation capability
Yao Zhang , Chang Xu , Yun Huang , Dongmei Tan , Wenping Luo , Yan Zhang , Yi Tan
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (6) : 824 -834.
Establishment of immortalized rabbit bone marrow mesenchymal stem cells and a preliminary study of their osteogenic differentiation capability
Background: A stable and standardized source of mesenchymal stem cells is a prerequisite for bone repair tissue engineering research and application. We aimed to establish a stable cell line of bone marrow mesenchymal stem cells from New Zealand rabbits and explore their osteogenic differentiation capacity.
Methods: Primary rabbit bone marrow mesenchymal stem cells (RBMSCs) were isolated and immortalized via retroviral expression of SV40 Large T antigen (LTA). To assess the osteogenic differentiation capacity of the cells in vitro, we studied the alkaline phosphatase (ALP) expression level and calcium deposition in bone morphogenetic protein 9 (BMP9)-induced immortalized cells using ALP staining and quantification, as well as alizarin red staining. Ectopic bone formation by the cells was assessed using micro-computed tomography (µCT) and histological examination.
Results: The immortalized cell line we established using SV40 LTA, which we termed iRBMSCs, was non-tumorigenic and maintained long-term proliferative activity. We further discovered that BMP9 (MOI = 30) effectively induced the osteogenic differentiation capacity of iRBMSCs in vitro, and there was a synergy with GelMA hydrogel in inducing osteogenic differentiation of the iRBMSCs in vivo.
Conclusion: We confirmed that iRBMSCs are promising as a stable cell line source for bone defect repair engineering.
bone marrow mesenchymal stem cells / bone morphogenetic protein 9 / GelMA hydrogel / immortalization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.
/
| 〈 |
|
〉 |