Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review

Maryam Golmohammadi , Mohammad Yassin Zamanian , Ahmed Muzahem Al-Ani , Thaer L. Jabbar , Ali Kamil Kareem , Zeinab Hashem Aghaei , Hossein Tahernia , Ahmed Hjazi , Saad Abdul-ridh Jissir , Elham Hakimizadeh

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (6) : 853 -867.

PDF (2250KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (6) : 853 -867. DOI: 10.1002/ame2.12491
REVIEW

Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review

Author information +
History +
PDF (2250KB)

Abstract

Background: Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression.

Aims: The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms.

Materials & Methods: The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles.

Results: This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis.

Conclusion: CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.

Keywords

apoptosis / cell proliferation / curcumin / curcumin analogues / STAT3

Cite this article

Download citation ▾
Maryam Golmohammadi, Mohammad Yassin Zamanian, Ahmed Muzahem Al-Ani, Thaer L. Jabbar, Ali Kamil Kareem, Zeinab Hashem Aghaei, Hossein Tahernia, Ahmed Hjazi, Saad Abdul-ridh Jissir, Elham Hakimizadeh. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Models and Experimental Medicine, 2024, 7(6): 853-867 DOI:10.1002/ame2.12491

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reddy TP, Rosato RR, Li X, Moulder S, Piwnica-Worms H, Chang JC. A comprehensive overview of metaplastic breast cancer: clinical features and molecular aberrations. Breast Cancer Res. 2020;22(1):1-11.

[2]

Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes— dealing with the diversity of breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22(8):1736-1747.

[3]

Patnayak R, Jena A, Rukmangadha N, et al. Hormone receptor status (estrogen receptor, progesterone receptor), human epidermal growth factor-2 and p53 in south Indian breast cancer patients: a tertiary care center experience. Indian Journal of Medical and Paediatric Oncology. 2015;36(2):117-122.

[4]

Maqbool M, Bekele F, Fekadu G. Treatment Strategies against Triple-Negative Breast Cancer: an Updated Review. Targets and Therapy; 2023:15-24.

[5]

Li L, Zhang F, Liu Z, Fan Z. Immunotherapy for triple-negative breast cancer: combination strategies to improve outcome. Cancer. 2023;15(1):321.

[6]

Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol. 2015;12(7):381-394.

[7]

Kunkler IH, Williams LJ, Jack WJL, Cameron DA, Dixon JM. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388(7):585-594.

[8]

Riaz N, Jeen T, Whelan TJ, Nielsen TO. Recent advances in optimizing radiation therapy decisions in early invasive breast cancer. Cancer. 2023;15(4):1260.

[9]

van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R, van Deurzen CHM. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci. 2023;24(3):2969.

[10]

Magno E, Bussard KM. A representative clinical course of progression, with molecular insights, of hormone receptor-positive, HER2-negative bone metastatic breast cancer. Int J Mol Sci. 2024;25(6):3407.

[11]

Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101-126.

[12]

Herdiana Y, Sriwidodo S, Sofian FF, Wilar G, Diantini A. Nanoparticle-based antioxidants in stress signaling and programmed cell death in breast cancer treatment. Molecules. 2023;28(14):5305.

[13]

Herdiana Y, Husni P, Nurhasanah S, Shamsuddin S, Wathoni N. Chitosan-based nano systems for natural antioxidants in breast cancer therapy. Polymers. 2023;15(13):2953.

[14]

Alam B et al. Plant-based natural products for breast cancer prevention: a south Asian Association for Regional Cooperation (SAARC) countries perspective. Clin Surg. 2021;2021(6):3047.

[15]

Noel B, Singh SK, Lillard JW, Singh R. Role of natural compounds in preventing and treating breast cancer. Front Biosci (Schol Ed). 2020;12:137-160.

[16]

Islam MR, Islam F, Nafady MH, et al. Natural small molecules in breast cancer treatment: understandings from a therapeutic viewpoint. Molecules. 2022;27(7):2165.

[17]

Pluta R, Januszewski S, Ułamek-Kozioł M. Mutual two-way interactions of curcumin and gut microbiota. Int J Mol Sci. 2020;21(3):1055.

[18]

Oglah MK et al. Curcumin and its derivatives: a review of their biological activities. Syst Rev Pharm. 2020;11(3):472-481.

[19]

Zhang W, Guo J, Li S, et al. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci Rep. 2017;7(1):46352.

[20]

Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol. 2003;171(7):3863-3871.

[21]

Glienke W, Maute L, Wicht J, Bergmann L. Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Investig. 2009;28(2):166-171.

[22]

Farghadani R, Naidu R. Curcumin: modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancer. 2021;13(14):3427.

[23]

To, S.Q et al. STAT3 signaling in breast cancer: multicellular actions and therapeutic potential. Cancer. 2022;14(2):429.

[24]

Ren M, Wang Y, Wu X, Ge S, Wang B. Curcumin synergistically increases effects of β-interferon and retinoic acid on breast cancer cells in vitro and in vivo by up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways. J Drug Target. 2017;25(3):247-254.

[25]

Deswal B, Bagchi U, Kapoor S. Curcumin suppresses M2 macrophage-derived paclitaxel Chemoresistance through inhibition of PI3K-AKT/STAT3 signaling. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2024;24(2):146-156.

[26]

Wang X et al. The curcumin analogue hydrazinocurcumin exhibits potent suppressive activity on carcinogenicity of breast cancer cells via STAT3 inhibition. Int J Oncol. 2012;40(4):1189-1195.

[27]

Hutzen B, Friedman L, Sobo M, et al. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Int J Oncol. 2009;35(4):867-872.

[28]

Lin L, Hutzen B, Ball S, et al. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci. 2009;100(9):1719-1727.

[29]

Vogel A, Pelletier J. Examen chimique de la racine de Curcuma. J Pharm. 1815;1:289-300.

[30]

Farooqui T, Farooqui AA. Curcumin: historical background, chemistry, pharmacological action, and potential therapeutic value. Curcumin for Neurological and Psychiatric Disorders. 2019;1:23-44.

[31]

Xie L, Ji X, Zhang Q, Wei Y. Curcumin combined with photodynamic therapy, promising therapies for the treatment of cancer. Biomed Pharmacother. 2022;146:112567.

[32]

Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091-20112.

[33]

Kawano S-i et al. Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry. Chin Chem Lett. 2013;24(8):685-687.

[34]

Cacciola NA, Cuciniello R, Petillo GD, Piccioni M, Filosa S, Crispi S. An overview of the enhanced effects of curcumin and chemotherapeutic agents in combined cancer treatments. Int J Mol Sci. 2023;24(16):12587.

[35]

Sabet S, Rashidinejad A, Melton LD, McGillivray DJ. Recent advances to improve curcumin oral bioavailability. Trends Food Sci Technol. 2021;110:253-266.

[36]

Liu Z, Smart JD, Pannala AS. Recent developments in formulation design for improving oral bioavailability of curcumin: a review. Journal of Drug Delivery Science and Technology. 2020;60:102082.

[37]

Horosanskaia E, Yuan L, Seidel-Morgenstern A, Lorenz H. Purification of curcumin from ternary extract-similar mixtures of curcuminoids in a single crystallization step. Crystals. 2020;10(3):206.

[38]

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-818.

[39]

Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1–2):127-135.

[40]

Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43(2):86-92.

[41]

Ming T, Tao Q, Tang S, et al. Curcumin: an epigenetic regulator and its application in cancer. Biomed Pharmacother. 2022;156:113956.

[42]

Gong W, Zhao W, Liu G, Shi L, Zhao X. Curcumin analogue BDDD-721 exhibits more potent anticancer effects than curcumin on medulloblastoma by targeting Shh/Gli1 signaling pathway. Aging (Albany NY). 2022;14(13):5464-5477.

[43]

Rahim NFC, Hussin Y, Aziz MNM, et al. Cytotoxicity and apoptosis effects of curcumin analogue (2E, 6E)-2, 6-Bis (2, 3-Dimethoxybenzylidine) cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules. 2021;26(5):1261.

[44]

Lu K-H, Wu HH, Lin RC, et al. Curcumin analogue l48h37 suppresses human osteosarcoma u2os and mg-63 cells’ migration and invasion in culture by inhibition of upa via the jak/stat signaling pathway. Molecules. 2020;26(1):30.

[45]

Hsiao P-C, Chang JH, Lee WJ, et al. The curcumin analogue, EF-24, triggers p38 MAPK-mediated apoptotic cell death via inducing PP2A-modulated ERK deactivation in human acute myeloid leukemia cells. Cancer. 2020;12(8):2163.

[46]

Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics. 2017;9(4):46.

[47]

Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, et al. Curcumin nanoformulations: beneficial nanomedicine against cancer. Phytother Res. 2022;36(3):1156-1181.

[48]

Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: potential applications in cancer. Int J Pharm. 2022;617:121622.

[49]

Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of curcumin nanoformulations in cancer management. Molecules. 2022;27(2):361.

[50]

Guo W, Song Y, Song W, et al. Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy. Sci Rep. 2020;10(1):7832.

[51]

Deng Z, Chen G, Shi Y, et al. Curcumin and its nano-formulations: defining triple-negative breast cancer targets through network pharmacology, molecular docking, and experimental verification. Front Pharmacol. 2022;13:920514.

[52]

Pazouki N, Irani S, Olov N, Atyabi SM, Bagheri-Khoulenjani S. Fe3O4 nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells. Progress in Biomaterials. 2022;11(1):43-54.

[53]

He Y, Yue Y, Zheng X, Zhang K, Chen S, du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules. 2015;20(5):9183-9213.

[54]

Han G, Xia J, Gao J, Inagaki Y, Tang W, Kokudo N. Anti-tumor effects and cellular mechanisms of resveratrol. Drug Discoveries & Therapeutics. 2015;9(1):1-12.

[55]

Arena A, Romeo MA, Benedetti R, et al. New insights into curcumin-and resveratrol-mediated anti-cancer effects. Pharmaceuticals. 2021;14(11):1068.

[56]

Muhanmode Y et al. Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant epithelial ovarian cancer cells via targeting P13K pathway. Hum Exp Toxicol. 2022;41:9603271221095929.

[57]

Mutlu Altundağ E, Yılmaz AM, Serdar BS, Jannuzzi AT, Koçtürk S, Yalçın AS. Synergistic induction of apoptosis by quercetin and curcumin in chronic myeloid leukemia (K562) cells: II. Signal transduction pathways involved. Nutr Cancer. 2021;73(4):703-712.

[58]

Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 2019;52:117-128.

[59]

Kundur S, Prayag A, Selvakumar P, et al. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J Cell Physiol. 2019;234(7):11103-11118.

[60]

Dei Cas M, Ghidoni R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients. 2019;11(9):2147.

[61]

Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020;25(12):2791.

[62]

Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;9(2):705-714.

[63]

Moetlediwa MT, Ramashia R, Pheiffer C, Titinchi SJJ, Mazibuko-Mbeje SE, Jack BU. Therapeutic effects of curcumin derivatives against obesity and associated metabolic complications: a review of in vitro and in vivo studies. Int J Mol Sci. 2023;24(18):14366.

[64]

Shi W, Inoue M, Minami M, et al. The genomic structure and chromosomal localization of the mouse STAT3 gene. Int Immunol. 1996;8(8):1205-1211.

[65]

Kato K, Nomoto M, Izumi H, et al. Structure and functional analysis of the human STAT3 gene promoter: alteration of chromatin structure as a possible mechanism for the upregulation in cisplatin-resistant cells. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 2000;1493(1–2):91-100.

[66]

Shao H, Quintero AJ, Tweardy DJ. Identification and characterization of cis elements in the STAT3 gene regulating STAT3α and STAT3β messenger RNA splicing. Blood, the Journal of the American Society of Hematology. 2001;98(13):3853-3856.

[67]

Subramaniam A, Shanmugam MK, Perumal E, et al. Potential role of signal transducer and activator of transcription (STAT) 3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA)-reviews on. Cancer. 2013;1835(1):46-60.

[68]

Lin W-H, Chang YW, Hong MX, et al. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene. 2021;40(4):791-805.

[69]

Tolomeo M, Cascio A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int J Mol Sci. 2021;22(2):603.

[70]

Dewilde S et al. Of alphas and betas: distinct and overlapping functions of STAT3 isoforms. Frontiers in Bioscience-Landmark. 2008;13(17):6501-6514.

[71]

Peyser ND, Freilino M, Wang L, et al. Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. Oncogene. 2016;35(9):1163-1169.

[72]

Zhang X, Guo A, Yu J, et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci. 2007;104(10):4060-4064.

[73]

Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-248.

[74]

Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells. 2020;9(1):217.

[75]

Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett. 2020;19(4):2585-2594.

[76]

Wu M et al. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res. 2019;11:4957-4969.

[77]

Xia T, Zhang M, Lei W, et al. Advances in the role of STAT3 in macrophage polarization. Front Immunol. 2023;14:1160719.

[78]

Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol. 2011;31(5):980-985.

[79]

Wu M, Song D, Li H, et al. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res. 2019;11:4957-4969.

[80]

Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol. 2005;5(8):593-605.

[81]

Yagil Z, Nechushtan H, Kay G, Yang CM, Kemeny DM, Razin E. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol. 2010;31(5):199-204.

[82]

Luo D-D, Zhao F. KLF4 suppresses the proliferation and metastasis of NSCLC cells via inhibition of MSI2 and regulation of the JAK/STAT3 signaling pathway. Transl Oncol. 2022;22:101396.

[83]

Cui DM, Zeng T, Ren J, et al. KLF 4 knockdown attenuates TBI-induced neuronal damage through p53 and JAK-STAT 3 signaling. CNS Neurosci Ther. 2017;23(2):106-118.

[84]

Sahin GS, Dhar M, Dillon C, et al. Leptin stimulates synaptogenesis in hippocampal neurons via KLF4 and SOCS3 inhibition of STAT3 signaling. Mol Cell Neurosci. 2020;106:103500.

[85]

Okitsu K, Kanda T, Imazeki F, et al. Involvement of interleukin-6 and androgen receptor signaling in pancreatic cancer. Genes Cancer. 2010;1(8):859-867.

[86]

Bharadwaj U, Marin-Muller C, Li M, Chen C, Yao Q. Mesothelin overexpression promotes autocrine IL-6/sIL-6R trans-signaling to stimulate pancreatic cancer cell proliferation. Carcinogenesis. 2011;32(7):1013-1024.

[87]

Gozgit JM, Bebernitz G, Patil P, et al. Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2 V617F cell line SET-2. J Biol Chem. 2008;283(47):32334-32343.

[88]

Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48-54.

[89]

Wang Y-S, Chen C, Zhang SY, Li Y, Jin YH. (20S) Ginsenoside Rh2 inhibits STAT3/VEGF signaling by targeting annexin A2. Int J Mol Sci. 2021;22(17):9289.

[90]

Song TL, Nairismägi ML, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood, the Journal of the American Society of Hematology. 2018;132(11):1146-1158.

[91]

Wang Y, Shen Y, Wang S, Shen Q, Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett. 2018;415:117-128.

[92]

Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91-102.

[93]

Tkach, M., et al., p42/p44 MAPK-Mediated Stat3 Ser727 Phosphorylation Is Required for Progestin-Induced Full Activation of Stat3 and Breast Cancer Growth. Endocrine-Related Cancer. 2013.

[94]

Song Y-M, Qian XL, Xia XQ, et al. STAT3 and PD-L1 are negatively correlated with ATM and have impact on the prognosis of triple-negative breast cancer patients with low ATM expression. Breast Cancer Res Treat. 2022;196(1):45-56.

[95]

Chen W, Patel D, Jia Y, et al. MARCH8 suppresses tumor metastasis and mediates degradation of STAT3 and CD44 in breast cancer cells. Cancer. 2021;13(11):2550.

[96]

Doheny D, Sirkisoon S, Carpenter RL, et al. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene. 2020;39(42):6589-6605.

[97]

Banerjee K, Resat H. Constitutive activation of STAT 3 in breast cancer cells: a review. Int J Cancer. 2016;138(11):2570-2578.

[98]

Zuo M, Li C, Lin J, Javle M. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy. Oncotarget. 2015;6(13):10940-10949.

[99]

Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3–NFκB signaling. Anticancer Res. 2015;35(1):39-46.

[100]

Afshari H, Noori S, Daraei A, Azami Movahed M, Zarghi A. A novel imidazo[1,2-a] pyridine derivative and its co-administration with curcumin exert anti-inflammatory effects by modulating the STAT3/NF-κB/iNOS/COX-2 signaling pathway in breast and ovarian cancer cell lines. A Novel Imidazo [1, 2-a] Pyridine Derivative and its co-Administration with Curcumin Exert Anti-Inflammatory Effects by Modulating the STAT3/NF-κB/ iNOS/COX-2 Signaling Pathway in Breast and Ovarian Cancer Cell Lines. Vol 14. BI; 2024.

[101]

Del Re M et al. Pharmacogenetics of anti-estrogen treatment of breast cancer. Cancer Treat Rev. 2012;38(5):442-450.

[102]

Huang M, Zhai BT, Fan Y, et al. Targeted drug delivery systems for curcumin in breast cancer therapy. Int J Nanomedicine. 2023;18:4275-4311.

[103]

Wang Y, Yu J, Cui R, Lin J, Ding X. Curcumin in treating breast cancer: a review. Journal of Laboratory Automation. 2016;21(6):723-731.

[104]

Sethiya A, Agarwal DK, Agarwal S. Current trends in drug delivery system of curcumin and its therapeutic applications. Mini Rev Med Chem. 2020;20(13):1190-1232.

[105]

Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res. 2023;33(1):53-64.

[106]

Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomol Concepts. 2018;9(1):64-79.

[107]

Qin X-Q, Beckham C, Brown JL, Lukashev M, Barsoum J. Human and mouse IFN-β gene therapy exhibits different anti-tumor mechanisms in mouse models. Mol Ther. 2001;4(4):356-364.

[108]

Ling X, Marini F, Konopleva M, et al. Mesenchymal stem cells overexpressing IFN-β i nhibit b reast c ancer g rowth a nd m etastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron. 2010;3(1):83-95.

[109]

Cañete A, Cano E, Muñoz-Chápuli R, Carmona R. Role of vitamin a/retinoic acid in regulation of embryonic and adult hematopoiesis. Nutrients. 2017;9(2):159.

[110]

Tang X-H, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annual Review of Pathology: Mechanisms of Disease. 2011;6:345-364.

[111]

Mehrabian Z, Chandrasekaran K, Kalakonda S, Kristian T, Fiskum G, Kalvakolanu DV. The IFN-β and retinoic acid-induced cell death regulator GRIM-19 is upregulated during focal cerebral ischemia. J Interf Cytokine Res. 2007;27(5):383-392.

[112]

Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L, Soto-Cerrato V. Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev. 2019;39(3):887-909.

[113]

Li D, Hu C, Li H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomedical Reports. 2018;8(5):399-406.

[114]

Belka C, Budach W. Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol. 2002;78(8):643-658.

[115]

Lucken-Ardjomande S, Martinou J-C. Regulation of Bcl-2 proteins and of the permeability of the outer mitochondrial membrane. C R Biol. 2005;328(7):616-631.

[116]

Maji S, Panda S, Samal SK, et al. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv Cancer Res. 2018;137:37-75.

[117]

Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011;18(9):1414-1424.

[118]

Hahn Y-I, Kim SJ, Choi BY, et al. Curcumin interacts directly with the cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep. 2018;8(1):6409.

[119]

Chen T, You Y, Jiang H, Wang ZZ. Epithelial–mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017;232(12):3261-3272.

[120]

Das V et al. The basics of epithelial–mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234(9):14535-14555.

[121]

Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101(4):816-829.

[122]

Franco HL, Casasnovas J, Rodriguez-Medina JR, Cadilla CL. Redundant or separate entities?—roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res. 2011;39(4):1177-1186.

[123]

Eckert MA, Lwin TM, Chang AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19(3):372-386.

[124]

Greco L, Rubbino F, Morelli A, et al. Epithelial to mesenchymal transition: a challenging playground for translational research. Current models and focus on TWIST1 relevance and gastrointestinal cancers. Int J Mol Sci. 2021;22(21):11469.

[125]

Vousden KH. Biochimica et Biophysica Acta (BBA)-reviews on cancer. Activation of the p53 Tumor Suppressor Protein. 2002;1602(1):47-59.

[126]

Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63-71.

[127]

Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. Egyptian Journal of Medical Human Genetics. 2020;21(1):1-23.

[128]

Quest AF, Gutierrez-Pajares JL, Torres VA. Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med. 2008;12(4):1130-1150.

[129]

Hou K, Li S, Zhang M, Qin X. Caveolin-1 in autophagy: a potential therapeutic target in atherosclerosis. Clin Chim Acta. 2021;513:25-33.

[130]

Gallardo M, Calaf GM. Curcumin and epithelial-mesenchymal transition in breast cancer cells transformed by low doses of radiation and estrogen. Int J Oncol. 2016;48(6):2534-2542.

[131]

Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176-185.

[132]

Zhang S, Liu Y, Zhang X, et al. Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics. 2018;8(19):5348-5361.

[133]

Karimabad MN, Arababadi MK, Hakimizadeh E, et al. Is the IL-10 promoter polymorphism at position-592 associated with immune system-related diseases? Inflammation. 2013;36:35-41.

[134]

Hao N-B, MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and the progression of tumors. J Immunol Res. 2012;2012:1-11.

[135]

Tariq M, Zhang J, Liang G, Ding L, He Q, Yang B. Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem. 2017;118(9):2484-2501.

[136]

Alghanimi YK, Ghasemian A. Inhibitory traits of dendrosome curcumin (DNC) on breast cancer compared to curcumin single compound. J Gastrointest Cancer. 2020;51:527-533.

[137]

TAHMASEBI, B.M., et al., Dendrosomal Nano-Curcumin, the Novel Formulation to Improve the Anticancer Properties of Curcumin. Progress in Biological Sciences. 2015.

[138]

Esmatabadi MJD, Farhangi B, Montazeri M, Monfared H, Sistani RN, Sadeghizadeh M. Up-regulation of miR-21 decreases chemotherapeutic effect of dendrosomal curcumin in breast cancer cells. Iran J Basic Med Sci. 2017;20(4):350-359.

[139]

Shiri S, Alizadeh AM, Baradaran B, et al. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac J Cancer Prev. 2015;16(9):3917-3922.

[140]

Wang P, Wang B, Chung S, Wu Y, Henning SM, Vadgama JV. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells. RSC Adv. 2014;4(66):35242-35250.

[141]

Garrido-Trigo A, Salas A. Molecular structure and function of Janus kinases: implications for the development of inhibitors. J Crohn’s Colitis. 2020;14(Supplement_2):S713-S724.

[142]

Roskoski R Jr. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res. 2016;111:784-803.

[143]

Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210.

[144]

Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. Cells. 2019;8(8):854.

[145]

Hoffman B, Liebermann D. Apoptotic signaling by c-MYC. Oncogene. 2008;27(50):6462-6472.

[146]

Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer. 2021;20(1):1-18.

[147]

Morrish F, Neretti N, Sedivy JM, Hockenbery DM. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle. 2008;7(8):1054-1066.

[148]

Hendrayani S-F, Al-Khalaf HH, Aboussekhra A. Curcumin triggers p16-dependent senescence in active breast cancer-associated fibroblasts and suppresses their paracrine procarcinogenic effects. Neoplasia. 2013;15(6):631.

[149]

Wei C-C, Ball S, Lin L, et al. Two small molecule compounds, LLL12 and FLLL32, exhibit potent inhibitory activity on STAT3 in human rhabdomyosarcoma cells. Int J Oncol. 2011;38(1):279-285.

[150]

Bill MA, Fuchs JR, Li C, et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer. 2010;9:1-12.

[151]

Fossey SL et al. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer. 2011;11(1):1-15.

[152]

Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050-3060.

[153]

Tokunaga E, Kimura Y, Mashino K, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer. 2006;13:137-144.

[154]

Kaptain S, Tan LK, Chen B. Her-2/neu and breast cancer. Diagn Mol Pathol. 2001;10(3):139-152.

[155]

Petrelli F, Barni S. Role of HER2-neu as a prognostic factor for survival and relapse in pT1a–bN0M0 breast cancer: a systematic review of the literature with a pooled-analysis. Med Oncol. 2012;29:2586-2593.

[156]

Li P, Liu T, Wang Y, et al. Influence of neoadjuvant chemotherapy on HER2/neu status in invasive breast cancer. Clin Breast Cancer. 2013;13(1):53-60.

[157]

Shim JS, Kim DH, Jung HJ, et al. Hydrazinocurcumin, a novel synthetic curcumin derivative, is a potent inhibitor of endothelial cell proliferation. Bioorg Med Chem. 2002;10(9):2987-2992.

[158]

Zhang X, Tian W, Cai X, et al. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One. 2013;8(6):e65896.

[159]

Kaeidi A, Taghipour Z, Allahtavakoli M, Fatemi I, Hakimizadeh E, Hassanshahi J. Ameliorating effect of troxerutin in unilateral ureteral obstruction induced renal oxidative stress, inflammation, and apoptosis in male rats. Naunyn Schmiedeberg’s Arch Pharmacol. 2020;393:879-888.

[160]

Fatemi I, Saeed-Askari P, Hakimizadeh E, et al. Long-term metformin therapy improves neurobehavioral functions and antioxidative activity after cerebral ischemia/reperfusion injury in rats. Brain Res Bull. 2020;163:65-71.

[161]

Panieri E, Santoro M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6):e2253.

[162]

Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1):22-28.

[163]

Friedman L, Lin L, Ball S, et al. Curcumin analogues exhibit enhanced growth suppressive activity in human pancreatic cancer cells. Anti-Cancer Drugs. 2009;20(6):444-449.

[164]

Kudo C et al. Novel curcumin analogs, GO-Y030 and GO-Y078, are multi-targeted agents with enhanced abilities for multiple myeloma. Anticancer Res. 2011;31(11):3719-3726.

[165]

Sato A, Kudo C, Yamakoshi H, et al. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ t hat s uppresses N F-κB signaling and induces apoptosis. Cancer Sci. 2011;102(5):1045-1051.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (2250KB)

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/