Advances in nanotechnology for the diagnosis and management of metabolic dysfunction-associated steatotic liver disease

Fenfen Li , Ruyan Yuan , Jiamin Zhang , Bing Su , Xiaolong Qi

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (2) : 101025

PDF (3307KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (2) :101025 DOI: 10.1016/j.ajps.2025.101025
Review artices
research-article

Advances in nanotechnology for the diagnosis and management of metabolic dysfunction-associated steatotic liver disease

Author information +
History +
PDF (3307KB)

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) has a high global incidence and associated with increased lipid accumulation in hepatocytes, elevated hepatic enzyme levels, liver fibrosis, and hepatic carcinoma. Despite decades of research and significant advancements, the treatment of MASLD still faces formidable challenges. Nanoprobes for diagnostics and nanomedicine for targeted drug delivery to the liver present promising options for MASLD diagnosis and treatment, enhancing both imaging contrast and bioavailability. Here, we review recent advances in nanotechnology applied to MASLD diagnosis and treatment, specifically focusing on drug delivery systems targeting hepatocytes, hepatic stellate cells, Kupffer cells, and liver sinusoidal endothelial cells. This review aims to provide an overview of nanomedicine's potential in early MASLD diagnosis and therapeutic interventions, addressing related complications.

Keywords

MASLD / Liver fibrosis / Theranostics / Nanoprobes / Multifunctional nanocarriers

Cite this article

Download citation ▾
Fenfen Li, Ruyan Yuan, Jiamin Zhang, Bing Su, Xiaolong Qi. Advances in nanotechnology for the diagnosis and management of metabolic dysfunction-associated steatotic liver disease. Asian Journal of Pharmaceutical Sciences, 2025, 20(2): 101025 DOI:10.1016/j.ajps.2025.101025

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors have declared no conflict of interest.

Acknowledgments

This work was supported in part by Noncommunicable Chronic Diseases-National Science and Technology Major Project (2023ZD0508800), National Natural Science Foundation of China (32401171), the Key Research and Development Program of Jiangsu Province (BE2023767a), Fundamental Research Fund of Southeast University (3290002406A2), Research Personnel Cultivation Programme of Zhongda Hospital, Southeast University (CZXM-GSPRC125), Distinguished Medical Specialists in Jiangsu Province (CZXM-RC-43), and Changjiang Scholars Talent Cultivation Project of Zhongda Hospital of Southeast University (2023YJXYYRCPY03).

References

[1]

Guzman S, Dragan M, Kwon H, de Oliveira V, Rao S, Bhatt V, et al. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest 2022; 132(10):e145889.

[2]

Kumar S, Duan Q Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from nafld to liver fibrosis. Adv Drug Delivery Rev 2021; 176:113869.

[3]

Loomba R, Friedman SL. Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184(10):2537-64.

[4]

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023; 78(6):1966-86.

[5]

Wong VWS, Ekstedt M, Wong GL-H, Hagström H. Changing epidemiology, global trends and implications for outcomes of nafld. J Hepatol 2023; 79(3):842-52.

[6]

Rao S, Yang X, Ohshiro K, Zaidi S, Wang Z, Shetty K, et al. B2-spectrin (sptbn1) as a therapeutic target for diet-induced liver disease and preventing cancer development. Sci Transl Med 2021; 13:624.

[7]

Huang DQ, El-Serag HB, Loomba R. Global epidemiology of nafld-related hcc: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18(4):223-38.

[8]

Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 2017; 152(3):598-607.e592.

[9]

Shen Y, Zhou Q, Li W, Yuan L. Advances in optical imaging of nonalcoholic fatty liver disease. Chem Asian J. 2022; 17:12.

[10]

Guo JY, Chen HH, Lee WJ, Chen SC, Lee SD, Chen CY. Fibroblast growth factor 19 and fibroblast growth factor 21 regulation in obese diabetics, and non-alcoholic fatty liver disease after gastric bypass. Nutrients 2022; 14:3.

[11]

Bedossa P. Pathology of non-alcoholic fatty liver disease. Liver Int 2017; 37(S1):85-9.

[12]

Brunt EM, Wong VWS, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015; 1(1):15080.

[13]

Tamaki N, Ajmera V, Loomba R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in nafld. Nat Rev Endocrinol 2021; 18(1):55-66.

[14]

Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomed 2023; 18(1):67-84.

[15]

Harrison SA, Bedossa P, Guy CD, Schattenberg JM, Loomba R, Taub R, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med 2024; 390(6):497-509.

[16]

Bansal MB, Resmetirom Karim G. An orally administered, small-molecule, liver-directed, $\beta$-selective thr agonist for the treatment of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Eur Endocrinol 2023; 19(1):60-70.

[17]

Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated nafld and liver fibrosis. Adv Drug Delivery Rev 2021; 176:113888.

[18]

Kokkorakis M, Boutari C, Hill MA, Kotsis V, Loomba R, Sanyal AJ, et al. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: trials, opportunities, and challenges. Metabolism 2024;154.

[19]

Li Y, Shang W, Liang X, Zeng C, Liu M, Wang S, et al. The diagnosis of hepatic fibrosis by magnetic resonance and near-infrared imaging using dual-modality nanoparticles. RSC Adv 2018; 8(12):6699-708.

[20]

Han Q, Du L, Zhu L, Yu D. Review of the application of dual drug delivery nanotheranostic agents in the diagnosis and treatment of liver cancer. Molecules 2023; 28(20):7004.

[21]

Paul J. Recent advances in non-invasive diagnosis and medical management of non-alcoholic fatty liver disease in adult. Egyptian Liver J 2020; 10:37.

[22]

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the american association for the study of liver diseases. Hepatology 2017; 67(1):328-57.

[23]

Lu Z-Y, Shao Z, Li Y-L, Wulasihan M, Chen X-H. Prevalence of and risk factors for non-alcoholic fatty liver disease in a chinese population: an 8-year follow-up study. World J Gastroenterol 2016; 22(13):3663-9.

[24]

Piazzolla VA, Mangia A. Noninvasive diagnosis of nafld and nash. Cells 2020; 9(4):1005.

[25]

Balachandran YL, Wang W, Yang H, Tong H, Wang L, Liu F, et al. Heterogeneous iron oxide/dysprosium oxide nanoparticles target liver for precise magnetic resonance imaging of liver fibrosis. ACS Nano 2022; 16(4):5647-59.

[26]

Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic modalities of non-alcoholic fatty liver disease: from biochemical biomarkers to multi-omics non-invasive approaches. Diagnostics 2022; 12(2):407.

[27]

Liu S, Chen X, Jiang X, Yin X, Fekadu G, Liu C, et al. Liverrisk score: an accurate, cost-effective tool to predict fibrosis, liver-related, and diabetes-related mortality in the general population. Med 2024; 5(6) 570-82.e574.

[28]

Tincopa MA, Loomba R. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Lancet Gastroenterol Hepatol 2023; 8(7):660-70.

[29]

Serra-Burriel M, Juanola A, Serra-Burriel F, Thiele M, Graupera I, Pose E, et al. Development, validation, and prognostic evaluation of a risk score for long-term liver-related outcomes in the general population: a multicohort study. The Lancet 2023; 402(10406):988-96.

[30]

Day CP, James OFW. Steatohepatitis: a tale of two "hits"? Gastroenterology 1998; 114(4):842-5.

[31]

Wang J, Wang L, Zhang X-J, Zhang P, Cai J, She Z-G, et al. Recent updates on targeting the molecular mediators of nafld. J Mol Med 2023; 101(1-2):101-24.

[32]

X-YZ Guang-Yan Wang, Wang Chun-Jiong, Guan You-Fei. Emerging novel targets for nonalcoholic fatty liver disease treatment: evidence from recent basic studies. World J Gastroenterol 2023; 29(1):75-95.

[33]

Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52(5):1836-46.

[34]

Hodson L, Gunn PJ. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 2019; 15(12):689-700.

[35]

Nakamura M, Liu T, Husain S, Zhai P, Warren JS, Hsu C-P, et al. Glycogen synthase kinase- 3a promotes fatty acid uptake and lipotoxic cardiomyopathy. Cell Metab 2019; 29(5) 1119-34.e1112.

[36]

Hong T, Chen Y, Li X, Lu Y, Pu J. The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxid Med Cell Longev 2021; 2021:1-25.

[37]

Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, et al. Mitochondria as players and targets of therapies? Int J Mol Sci 2021; 22(10):5375.

[38]

Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR- $\gamma$ signaling in nonalcoholic fatty liver disease: pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391.

[39]

Carvajal S, Perramón M, Oró D, Casals E, Fernández-Varo G, Casals G, et al. Cerium oxide nanoparticles display antilipogenic effect in rats with non-alcoholic fatty liver disease. Sci Rep 2019; 9(1):12848.

[40]

Neiburga K, Vilne B, Bauer S, Bongiovanni D, Ziegler T, Lachmann M, et al. Vascular tissue specific mirna profiles reveal novel correlations with risk factors in coronary artery disease. Biomolecules 2021; 11(11):1683.

[41]

Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007; 133(2):496-506.

[42]

Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al.The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proceed Nation Acad Sci 2007; 104(31):12587-94.

[43]

Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of insulin resistance in mafld. Int. J. Mol. Sci. 2021; 22(8):4156.

[44]

Chung H, Chou W, Sears DD, Patterson RE, Webster NJG, Ellies LG. Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 2016; 65(12):1743-54.

[45]

Carranza-Trejo AM, Vetvicka V, Vistejnova L, Kralickova M, Montufar EB. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15(7):783-96.

[46]

Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, et al. M2 kupffer cells promote m1 kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 2014; 59(1):130-42.

[47]

Salunkhe SA, Chitkara D, Mahato RI, Mittal A. Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Adv Drug Delivery Rev 2021; 173:394-415.

[48]

Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014; 14(3):181-94.

[49]

Vuppalanchi R, Noureddin M, Alkhouri N, Sanyal AJ. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2021; 18:373-92.

[50]

Ikenaga N, Peng Z-W, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 2017; 66(9):1697-708.

[51]

Liu L, Yin M, Gao J, Yu C, Lin J, Wu A, et al. Intestinal barrier function in the pathogenesis of nonalcoholic fatty liver disease. J Clin Transl Hepatol 2022; 11(2):452-8.

[52]

Yao M, Qv L, Lu Y, Wang B, Berglund B, Li L. An update on the efficacy and functionality of probiotics for the treatment of non-alcoholic fatty liver disease. Engineering 2021; 7(5):679-86.

[53]

Juárez-Fernández M, Goikoetxea-Usandizaga N, Porras D, García-Mediavilla MV, Bravo M, Serrano-Maciá M, et al. Enhanced mitochondrial activity reshapes a gut microbiota profile that delays nash progression. Hepatology 2023; 77(5):1654-69.

[54]

Moosavian SA, Sathyapalan T, Jamialahmadi T, Sahebkar A, Ciccarella G. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: a state-of-the-art review. Bioinorg Chem Appl 2021; 2021:1-13.

[55]

Harrison SA, Wong VWS, Okanoue T, Bzowej N, Vuppalanchi R, Younes Z, et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to nash: results from randomized phase iii stellar trials. J Hepatol 2020; 73(1):26-39.

[56]

Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, et al. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3(6):939-58.

[57]

Wu S, Xu T, Gao J, Zhang Q, Huang Y, Liu Z, et al. Non-invasive diagnosis of liver fibrosis via mri using targeted gadolinium-based nanoparticles. Eur J Nucl Med Mol Imaging 2024; 52(1):48-61.

[58]

Wu S, Meng X, Jiang X, Wu Y, Zhai S, Wang X, et al. Harnessing x-ray energy-dependent attenuation of bismuth-based nanoprobes for accurate diagnosis of liver fibrosis. Adv Sci 2021; 8(11):2002548.

[59]

Mishra A, Castañeda TR, Bader E, Elshorst B, Cummings S, Scherer P, et al. Triantennary galnac molecular imaging probes for monitoring hepatocyte function in a rat model of nonalcoholic steatohepatitis. Adv Sci 2020; 7:24.

[60]

Li X, Yue R, Guan G, Zhang C, Zhou Y, Song G. Recent development of ph-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. Exploration 2023; 3(3):20220002.

[61]

Jiang M, Ma Q, HuangJ, Bi S, Zeng S. Nir-ii emissive nanoprobe for non-invasive monitoring of liver fibrosis and in-situ ratiometric visualization of no gas-based therapy process. Chem EngJ 2023; 475:145977.

[62]

Sun X, Wang X, Fu L, Wang X, Chen L, Huang Y. A nanofluorescent probe for evaluating the fluctuation of aminopeptidase N in nonalcoholic fatty liver disease and hepatic fibrosis. Anal Chem 2024; 96(36):14639-49.

[63]

Chen C, Jie X, Ou Y, Cao Y, Xu L, Wang Y, et al. Nanoliposome improves inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Nanomedicine (Lond) 2017; 12(15):1791-800.

[64]

Cui Y, Guo C, Xia Z, Xue Y, Song B, Hu W, et al. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1a. Acta Biomater 2023; 169:500-16.

[65]

Oró D, Yudina T, Fernández-Varo G, Casals E, Reichenbach V, Casals G, et al. Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis. J Hepatol 2016; 64(3):691-8.

[66]

Ma Z, Tian X, Yu S, Shu W, Zhang C, Zhang L, et al. Liver fibrosis amelioration by macrophage-biomimetic polydopamine nanoparticles via synergistically alleviating inflammation and scavenging ros. Mol Pharm 2024; 21(6):3040-52.

[67]

Lee S, Han D, Kang HG, Jeong SJ, Jo JE, Shin J, et al. Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver disease by restoring autophagic clearance. Biomaterials 2019; 197:1-11.

[68]

Du K, Huang X, Peng A, Yang Q, Chen D, Zhang J, et al. Engineered fenofibrate as oxidation-sensitive nanoparticles with ros scavenging and ppar a -activating bioactivity to ameliorate nonalcoholic fatty liver disease. Mol. Pharm. 2022; 20(1):159-71.

[69]

Zai W, Chen W, Wu Z, Jin X, Fan J, Zhang X, et al. Targeted interleukin- 22 gene delivery in the liver by polymetformin and penetratin-based hybrid nanoparticles to treat nonalcoholic fatty liver disease. ACS Appl Mater Interfaces 2019; 11(5):4842-57.

[70]

Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, et al. The hepatic-targeted, resveratrol loaded nanoparticles for relief of high fat diet-induced nonalcoholic fatty liver disease. J Control Release 2019; 307:139-49.

[71]

Richter LR, Wan Q, Wen D, Zhang Y, Yu J, Jk Kang, et al. Targeted delivery of notch inhibitor attenuates obesity-induced glucose intolerance and liver fibrosis. ACS Nano 2020; 14(6):6878-86.

[72]

Domingues I, Michalowski CB, Marotti V, Zhang W, Van Hul M, Cani PD, et al. Exploiting the biological effect exerted by lipid nanocapsules in non-alcoholic fatty liver disease. J Control Release 2023; 356:542-53.

[73]

Huang K-W, Reebye V, Czysz K, Ciriello S, Dorman S, Reccia I, et al. Liver activation of hepatocellular nuclear factor- 4a by small activating rna rescues dyslipidemia and improves metabolic profile. Molecul Ther Nucl Acids 2020; 19:361-70.

[74]

Sarkar A, Mitra P, Lahiri A, Das T, Sarkar J, Paul S, et al. Butyrate limits inflammatory macrophage niche in nash. Cell Death Dis 2023; 14(5):332.

[75]

Shashni B, Tajika Y, Ikeda Y, Nishikawa Y, Nagasaki Y. Self-assembling polymer-based short chain fatty acid prodrugs ameliorate non-alcoholic steatohepatitis and liver fibrosis. Biomaterials 2023; 295:122047.

[76]

Jiménez Calvente C, Sehgal A, Popov Y, Kim YO, Zevallos V, Sahin U, et al. Specific hepatic delivery of procollagen a 1 (i) small interfering rna in lipid-like nanoparticles resolves liver fibrosis. Hepatology 2015; 62(4):1285-97.

[77]

Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin a-coupled liposomes to deliver sirna against a collagen-specific chaperone. Nat Biotechnol 2008; 26(4):431-42.

[78]

Sakamoto N, Ogawa K, Suda G, Morikawa K, Sho T, Nakai M, et al. Clinical phase 1b study results for safety, pharmacokinetics and efficacy of nd-102-s0201, a novel targeted lipid nanoparticle delivering hsp47 sirna for the treatment of japanese patients with advanced liver fibrosis. J Hepatol 2018; 68:S242.

[79]

Lawitz EJ, Shevell DE, Tirucherai GS, Du S, Chen W, Kavita U, et al. Bms-986263 in patients with advanced hepatic fibrosis: 36-week results from a randomized, placebo-controlled phase 2 trial. Hepatology 2021; 75(4):912-23.

[80]

Zhang C, Teng Y, Li F, Ho W, Bai X, Xu X, et al. Nanoparticle-mediated rna therapy attenuates nonalcoholic steatohepatitis and related fibrosis by targeting activated hepatic stellate cells. ACS Nano 2023; 17(15):14852-70.

[81]

Hu M, Wang Y, Liu Z, Yu Z, Guan K, Liu M, et al. Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat Nanotechnol 2021; 16(4):466-77.

[82]

Dewidar B, Meyer C, Dooley S, Meindl-Beinker aN. Tgf- $\beta$ in hepatic stellate cell activation and liver fibrogenesis—Updated 2019. Cells 2019; 8:11.

[83]

Li B, Huang Y, Bao J, Xu Z, Yan X, Zou Q. Supramolecular nanoarchitectonics based on antagonist peptide self-assembly for treatment of liver fibrosis. Small 2023:2304675.

[84]

Duong HT, Dong Z, Su L, Boyer C, George J, Davis TP, et al. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small 2015; 11(19):2291-304.

[85]

El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby TI, Khattab MM, El-Khatib AS. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: a novel strategy with potent efficacy in experimental liver fibrosis. J Control Release 2017; 266:226-37.

[86]

Jia Z, Gong Y, Pi Y, Liu X, Gao L, Kang L, et al. Ppb peptide-mediated sirna-loaded stable nucleic acid lipid nanoparticles on targeting therapy of hepatic fibrosis. Mol Pharm 2017; 15(1):53-62.

[87]

Li Y, Pu S, Liu Q, Li R, Zhang J, Wu T, et al. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. J Control Release 2019; 303:77-90.

[88]

Xia S, Liu Z, Cai J, Ren H, Li Q, Zhang H, et al. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release 2023; 355:54-67.

[89]

Kwon D, Kim SH, Son SW, Seo J, Jeong TB, Kim KM, et al. Germinated soybean embryo extract ameliorates fatty liver injury in high-fat diet-fed obese mice. Pharmaceuticals 2020; 13(11):380.

[90]

Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, et al. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration 2023; 3(1):20220045.

[91]

Melgar-Lesmes P, Luquero A, Parra-Robert M, Mora A, Ribera J, Edelman ER, et al. Graphene-dendrimer nanostars for targeted macrophage overexpression of metalloproteinase 9 and hepatic fibrosis precision therapy. Nano Lett 2018; 18(9):5839-45.

[92]

Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R, et al. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using plga nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control Release 2018; 288:227-38.

[93]

Maeda H, Minayoshi Y, Ichimizu S, Mizuta Y, Nagasaki T, Matsusaka K, et al. Repeated administration of kupffer cells-targeting nanoantioxidant ameliorates liver fibrosis in an experimental mouse model. Biol Pharm Bull 2020; 43(1):93-101.

[94]

Maeda H, Ishima Y, Saruwatari J, Mizuta Y, Minayoshi Y, Ichimizu S, et al. Nitric oxide facilitates the targeting kupffer cells of a nano-antioxidant for the treatment of nash. J Control Release 2022; 341:457-74.

[95]

Miyao M, Kotani H, Ishida T, Kawai C, Manabe S, Abiru H, et al. Pivotal role of liver sinusoidal endothelial cells in nafld/nash progression. Lab Invest 2015; 95(10):1130-44.

[96]

Hammoutene A, Rautou P-E. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J Hepatol 2019; 70(6):1278-91.

[97]

Hide D, Gil M, Andrade F, Rafael D, Raurell I, Bravo M, et al. Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. Nanomed 2020; 29:102267.

[98]

Lin L, Cai M, Deng S, Huang W, Huang J, Huang X, et al. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 sirna delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid. Nanomed 2017; 13(7):2329-39.

[99]

Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol 2015:1751-74.

[100]

Li F, Zhao Y, Cheng Z, Wang Y, Yue Y, Cheng X, et al. Restoration of sinusoid fenestrae followed by targeted nanoassembly delivery of an anti-fibrotic agent improves treatment efficacy in liver fibrosis. Adv Mater 2023; 35(17):2212206.

[101]

Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells - Gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 2018; 15(9):555-67.

[102]

Li F, Cheng Z, Sun J, Cheng X, Li C, Wu Z, et al. The combination of sinusoidal perfusion enhancement and apoptosis inhibition by riociguat plus a galactose-pegylated bilirubin multiplexing nanomedicine ameliorates liver fibrosis progression. Nano Letter 2023; 23(10):4126-35.

[103]

Mu Y, Li J, Kang JH, Eto H, Zai K, Kishimura A, et al. A lipid-based nanocarrier containing active vitamin D3 ameliorates nash in micevia direct and intestine-mediated effects on liver inflammation. Biol Pharm Bull 2020; 43(9):1413-20.

[104]

Wu P, Luo X, Wu H, Zhang Q, Dai Y, Sun M. Efficient and targeted chemo-gene delivery with self-assembled fluoro-nanoparticles for liver fibrosis therapy and recurrence. Biomaterials 2020; 261:120311.

[105]

Hide D, Raurell I, de So Rafael DF, Andrade FDS, Schwartz S, Augustin S, et al. Simvastatin-loaded polymeric micelles are a new, safe and effective drug delivery system targeting liver sinusoidal endothelial cells. J Hepatol 2018;68 S466.

[106]

Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in drug delivery for liver fibrosis. Front Mol Biosci 2022; 8:804396.

PDF (3307KB)

79

Accesses

0

Citation

Detail

Sections
Recommended

/