Ferroptosis can serve as a potent strategy for regulating cell death via lipid peroxidation and the imbalance of the antioxidant system resulting from iron accumulation in triple-negative breast cancer (TNBC) therapy. However, the ferroptosis accompanied with down-regulation of glutathione peroxidase 4 (GPX4) lead to CD36-mediated tumor-infiltrating CD8+ T cells uptaking fatty acids, resulting in the negative action on immunotherapeutic efficacy. Herein, the albumin nanoparticles, abbreviated as LHS NPs, were designed by co-assembly of hemin, linoleic acid-cystamine, and a CD36 inhibitor sulfosuccinimide oleate, to bi-directionally manipulated ferroptosis in tumor and CD8+ T cells for TNBC therapy. LHS NPs exerted more efficient reactive oxygen species generation, glutathione depletion and malondialdehyde production by the combinatory strategy of classical and non-classical ferroptosis modes, which amplified the positive action on ferroptosis in tumor cells. Meanwhile, LHS manipulated the negative action of ferroptosis by inhibiting the CD36 mediated-lipid peroxidation in CD8+ T cells, thereby activating the immunotherapeutic efficacy with the improvements on induction of immunogenic cell death, proliferation of CD4+CD8+ T cells and natural killer cells, alleviation immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and repolarization of the M2- to M1-phenotype tumor-associated macrophages. Thus, LHS NPs demonstrated an improved antitumor efficacy in suppressing the tumor growth and lung metastasis of 4T1-tumor mice. Our work gives novel insights for the bi-directionally manipulating ferroptosis in tumor and CD8+ T cells on TNBC chemoimmunotherapy.
Herein, porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared to load icariin and miR-23b for the treatment of metastatic lung cancer. The microspheres exhibited desirable aerodynamic diameter, high drug loading and encapsulation efficiency, as well as a favorable drug release profile, which was beneficial for the deposition and exposure of drugs in the lung tissues. The release solution from microspheres exhibited a favorable anti-proliferative effect by inducting cell apoptosis and arresting the cell cycle at G1 phase, and meanwhile inhibited the migration and invasion of cancer cells. More importantly, the microspheres could be effectively inhaled and accumulated in the lung tissues to trigger the in situ apoptosis of tumor cells and suppress metastasis, using mice bearing melanoma-metastatic lung cancer as a model. Furthermore, inhalation of the microspheres showed favorable biocompatibility, barely causing tissue damage. Overall, porous PLGA microspheres provide a promising platform for the inhalable co-delivery of drugs and genes to obtain ideal therapeutic efficacy in lung cancer and other pulmonary diseases.
There remain several intractable challenges for chemotherapy in glioma treatment, including the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and tumor heterogeneity caused by cancer stem cells (CSCs), which are resistant to conventional chemotherapy. Here, we established a nano strategy to kill glioma cells and CSCs, combining carfilzomib and bis(diethyldithiocarbamate)copper. The synergistic drug combination disturbed cell protein metabolism at different stages and induced apoptosis and cuproptosis. The Y-shaped targeting ligand pHA-VAP-modified nanodiscs were designed to help the chemotherapeutic agents cross the BBB/BBTB and finally accumulate in tumor site. This all-stage targeting and all-stage treatment nanomedicine significantly prolonged the survival in glioma-bearing mice and might inspire the rational design of advanced drug delivery platforms.
Infections of Helicobacter pylori (H. pylori) affect 42.1% of Chinese and 43.1% of the world population. H. pylori inhabits the mucous sublayer at the pylorus, leading to gastric ulcers, gastritis, and even cancer. Oral antibiotics are usually used to treat H. pylori infections, whereas traditional quadruple therapy has side effects including headaches, nausea, diarrhea, intestinal dysbacteriosis, antibiotic resistance, and repeat infections. Here, a drug-loaded magnetic microbullet was designed to realize long-term retention in the stomach for one-shot treatment for H. pylori infections. It comprises a hollow cylinder wherein eight microneedles homogenously distribute at the top and several round pores located at the bottom. It was three-dimensional (3D)-printed by stereolithography. A clarithromycin (CAM) ground mixture (CGM) was prepared to improve solubility. Enough CGM powders were filled into the cylinder, covered by a small round magnet, and sealed to form a CAM-loaded magnetic microbullet (CMMB). CAM continually released from CMMBs for >24 h. With outside magnetic guidance, an oral CMMB targeted the pylorus site and the microneedles immediately headed into the mucosa followed by long-term local drug release. The in vitro and in vivo safety of CMMBs was confirmed, where their swelling rates were low, and the oral CMMB was finally completely evacuated. An oral CMMB was administered to H. pylori-infected mice and maintained in the stomach for 36 h with magnetic guidance, and the successful eradication of H. pylori was confirmed after single-dose administration. Oral CMMBs are a convenient medication for the eradication of H. pylori.
Mitochondria provides adenosine triphosphate for multiple vital movements to ensure tumor cell proliferation. Compared to the broadly used method of inducing DNA replication arrest to kill cancer, inducing mitochondria damage to cause energy shortage is quite promising as it can inhibit tumor cell bioactivities, increase intracellular accumulation of toxic drugs, eventually sensitize chemotherapy and even reverse drug resistance. Breaking the balance of glutathione (GSH) and reactive oxygen species (ROS) contents have been proven efficient in destroying mitochondria respectively. Herein, apigenin, a GSH efflux reagent, and 2′-deoxy-5-fluorouridine 5′-monophosphate sodium salt (FdUMP) that could induce toxic ROS were co-delivered by constructed lipid nanoparticles, noted as Lip@AF. An immune-checkpoint inhibition reagent CD276 antibody was modified onto the surface of Lip@AF with high reaction specificity (noted as αCD276-Lip@AF) to enhance the recognition of immune cells to tumor. Results showed that the redox balance was destroyed, leading to severe injury to mitochondria and cell membrane. Furthermore, synergistic DNA/RNA replication inhibition caused by inhibiting the function of thymidylate synthase were observed. Eventually, significantly enhanced cytotoxicity was achieved by combining multiple mechanisms including ferroptosis, apoptosis and pyroptosis. In vivo, strengthen tumor growth inhibition was achieved by αCD276-Lip@AF with high biosafety, providing new sights in enhancing chemotherapy sensitiveness and achieving high-performance chemo-immunotherapy.
Nitric oxide (NO) modulates several cancer-related physiological processes and has advanced the development of green methods for cancer treatment and integrated platforms for combination or synergistic therapies. Although a nanoengineering strategy has been proposed to overcome deficiencies of NO gas or small NO donor molecules, such as short half-life, lipophilicity, non-selectivity, and poor stability, it remains challenging to prepare NO nanomedicines with simple composition, multiple functions and enhanced therapeutic efficacy. Herein, we build a liquid metal nanodroplet (LMND)-based NO nanogenerator (LMND@HSG) that is stabilized by a bioreducible guanylated hyperbranched poly(amido amine) (HSG) ligand. Mechanically, the tumor microenvironment specifically triggers a cascade process of glutathione elimination, reactive oxygen species (ROS) generation, and NO release. According to actual demand, the ROS and NO concentrations could be readily controlled by tuning the LMND and HSG feed amounts. Along with the intrinsic anticancer property of LMND (ROS-mediated apoptosis and anti-angiogenesis), LMND@HSG administration could further enhance tumor growth suppression compared with LMND and HSG alone. From this study, leveraging LMND for NO gas therapy provides more possibilities for the prospect of LMND-based anticancer nanomedicines.
Immunotherapy with interleukin-2 (IL-2) in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise. To address these challenges, IL-2-So-Lipo, a novel liposomal formulation combining IL-2 with sorafenib derivative, was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth. Sorafenib derivatives could target at melanoma-specific receptors, further enhancing liposomal specificity at the tumor site. Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies, as well as their combination. In a B16F10 melanoma model, IL-2-So-Lipo was found to significantly inhibit tumor progression (tumor volume of 108.01 ± 62.99 mm3) compared to the control group (tumor volume of 1,397.13 ± 75.55 mm3), improving the therapeutic efficacy. This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes. Additionally, liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency, promoting tumor cell apoptosis and suppressing angiogenesis. Mechanistically, IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype. Furthermore, IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway, exerting a significant role in mediating tumor resistance to sorafenib. These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers. Moreover, the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy, offering a synergistic approach to improve therapeutic outcomes for solid tumors.
Although with aggressive standards of care like surgical resection, chemotherapy, and radiation, high-grade gliomas (HGGs) and brain metastases (BM) treatment has remained challenging for more than two decades. However, technological advances in this field and immunotherapeutic strategies have revolutionized the treatment of HGGs and BM. Immunotherapies like immune checkpoint inhibitors, CAR-T targeting, oncolytic virus-based therapy, bispecific antibody treatment, and vaccination approaches, etc., are emerging as promising avenues offering new hope in refining patient's survival benefits. However, selective trafficking across the blood-brain barrier (BBB), immunosuppressive tumor microenvironment (TME), metabolic alteration, and tumor heterogeneity limit the therapeutic efficacy of immunotherapy for HGGs and BM. Furthermore, to address this concern, the NanoBioTechnology-based bioinspired delivery system has been gaining tremendous attention in recent years. With technological advances such as Trojan horse targeting and infusing/camouflaging nanoparticles surface with biological molecules/cells like immunocytes, erythrocytes, platelets, glioma cell lysate and/or integrating these strategies to get hybrid membrane for homotypic recognition. These biomimetic nanotherapy offers advantages over conventional nanoparticles, focusing on greater target specificity, increased circulation stability, higher active loading capacity, BBB permeability (inherent inflammatory chemotaxis of neutrophils), decreased immunogenicity, efficient metabolism-based combinatorial effects, and prevention of tumor recurrence by induction of immunological memory, etc. provide new age of improved immunotherapies outcomes against HGGs and BM. In this review, we emphasize on neuro-immunotherapy and the versatility of these biomimetic nano-delivery strategies for precise targeting of hard-to-treat and most lethal HGGs and BM. Moreover, the challenges impeding the clinical translatability of these approaches were addressed to unmet medical needs of brain cancers.
Gastrointestinal tract toxicity represents a serious adverse effect of chemotherapy, leading to reduced quality of life and survival. For instance, irinotecan (CPT-11) usually causes severe gastrointestinal toxicity, with a lack of effective therapeutic interventions, making treatment often unsustainable. Therefore, development of an effective and safe therapy is crucial for improving chemotherapy efficacy and the patients’ quality of life. In this work, we developed a novel approach involving the helical-shaped cyanobacterium microalgae, Spirulina platensis (SP), to carry the bornyl acetate (BA)-loaded chitosan nanoparticles to enhance drug retention in the small intestine. We demonstrated the protection effect of BA against chemotherapy-induced intestinal injury using an epithelial cell model. In a mouse model, orally administered BA-ChNPs@SP accumulated in the small intestine and attenuated inflammation by reducing dsDNA release and oxidative stress. This was concomitant with the restoration of the intestinal barrier and modulation of the immune microenvironment. This work suggests the promise of the microalgae-carrying nanomedicine strategy for treatment of intestinal diseases, emphasizing its potential in addressing chemotherapy-induced gastrointestinal complications.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has a high global incidence and associated with increased lipid accumulation in hepatocytes, elevated hepatic enzyme levels, liver fibrosis, and hepatic carcinoma. Despite decades of research and significant advancements, the treatment of MASLD still faces formidable challenges. Nanoprobes for diagnostics and nanomedicine for targeted drug delivery to the liver present promising options for MASLD diagnosis and treatment, enhancing both imaging contrast and bioavailability. Here, we review recent advances in nanotechnology applied to MASLD diagnosis and treatment, specifically focusing on drug delivery systems targeting hepatocytes, hepatic stellate cells, Kupffer cells, and liver sinusoidal endothelial cells. This review aims to provide an overview of nanomedicine's potential in early MASLD diagnosis and therapeutic interventions, addressing related complications.
Glioblastoma (GBM) is a highly infiltrative brain tumor. The treatment of GBM is challenging due to the existence of blood brain barrier, its highly invasive nature, and its heterogeneity. Given the limitations of conventional therapies, this Perspective explores the development trajectory of implantable devices, highlighting the advantages of current models. With the progression in research, these implantable devices certainly hold promising potential for GBM therapy.
Cellular hitchhiking is an emerging therapeutic strategy that uses an endogenous cell migration mechanism to deliver therapeutics to specific sites in the body. Owing to the low permeability and presence of the blood-brain barrier (BBB), the targeted delivery of therapeutics is limited, leading to inadequate localization in the brain. NCs fail to extravasate significantly into the tumor microenvironment (TME), demonstrating poor accumulation and tumor penetration. The novel cellular hitchhiking concept has been utilized to promote systemic half-life and therapeutic targeting. Neoplastic and neuroinflammatory diseases of the brain, including glioblastoma and neuroinflammation, face critical hurdles for efficiently delivering therapeutic entities owing to the BBB. Cellular hitchhiking can surmount these hurdles by utilizing various cell populations, such as stem cells, monocytes/macrophages, neutrophils, and platelets, as potential functional carriers to deliver the therapeutic cargo through the BBB. These carrier cells have the innate capability to traverse the BBB, transit through the brain parenchyma, and specifically reach disease sites such as inflammatory and neoplastic lesions owing to chemotactic navigation, i.e., movement attributed to chemical stimuli. Chemotherapeutic drugs delivered by cellular hitchhiking to achieve tumor-specific targeting have been discussed. This article explores various cell types for hitchhiking NCs to the TME with in-depth mechanisms and characterization techniques to decipher the backpack dissociation dynamics (nanoparticle payload detachment characteristics from hitchhiked cells) and challenges toward prospective clinical translation.