Numerical modeling of hydrodynamic added mass and added damping for elastic bridge pier

Yanfeng Wang, Zilong Ti

Advances in Bridge Engineering ›› 2023, Vol. 4 ›› Issue (1) : 0.

Advances in Bridge Engineering ›› 2023, Vol. 4 ›› Issue (1) : 0. DOI: 10.1186/s43251-023-00104-2
Original Innovation

Numerical modeling of hydrodynamic added mass and added damping for elastic bridge pier

Author information +
History +

Abstract

This paper presents a numerical model using the boundary element method for determining the hydrodynamic added mass and added damping of an elastic bridge pier with arbitrary cross-section. Combining the Euler–Bernoulli beam theory with the constant boundary element method, the modal superposition method is used to consider the deformable boundary conditions on the surface of elastic piers to couple the interaction between the elastic pier and water, and the equations for the hydrodynamic added mass and added damping of a general section pier considering the effect of pier-water coupling are derived. The accuracy of the developed model is verified by a benchmark experiment. The developed model is calculated for circular piers and compared with the added mass analytical formulation. The effects of oscillating frequency and structure geometry on the added mass and added damping are further investigated. Results demonstrate that the developed model can be used to solve the hydrodynamic added mass and added damping problems of the elastic bridge pier. Compared to the analytical formula, the developed method incorporates the consideration of added damping in the analysis of the pier-water coupling problem. Oscillating frequency and structure geometry have significant effects on added mass and added damping.

Cite this article

Download citation ▾
Yanfeng Wang, Zilong Ti. Numerical modeling of hydrodynamic added mass and added damping for elastic bridge pier. Advances in Bridge Engineering, 2023, 4(1): 0 https://doi.org/10.1186/s43251-023-00104-2
Funding
National Natural Science Foundation of China(52008349); China Postdoctoral Science Foundation(2021T140573); Natural Science Foundation of Sichuan Province(22NSFSC1163)

Accesses

Citations

Detail

Sections
Recommended

/