Vibration response analysis of footbridge based on pedestrian perception

Yuhao Feng, Deyi Chen, Zhenyu Wang, Shiping Huang, Yuejie He

Advances in Bridge Engineering ›› 2023, Vol. 4 ›› Issue (1) : 0.

Advances in Bridge Engineering ›› 2023, Vol. 4 ›› Issue (1) : 0. DOI: 10.1186/s43251-023-00085-2
Original Innovation

Vibration response analysis of footbridge based on pedestrian perception

Author information +
History +

Abstract

This article aims to study the influence of random crowd loading on the perceived vibration response of pedestrians. Firstly, a vertical vibration response analysis method considering pedestrian perception was established based on the random crowd walking model. Secondly, change rules of maximum vibration response of pedestrians, occurrence time and position interval under different random walk models were compared and analyzed. Finally, the vibration response reduction factor was defined by studying the correlation between the maximum vibration response of pedestrians and the peak acceleration of the structure, and the approximate calculation method of the maximum vibration response of pedestrians was proposed. The results show that the maximum acceleration perceived by pedestrians obeys the normal distribution under the four crowd walking models, the response distribution of ordered arrangement model (OAM) is larger than that of the other three models; The location and occurrence time of the maximum response depend on the distribution of pedestrian locations on the footbridge, and there is no significant change with the increase of population density. In addition, the distribution of OAM and stochastic arrival model (SAM) are consistent, which is concentrated in the middle of the total time-history. In contrast, the distribution of stochastic distribution model (SDM) and dynamic equilibrium model (DEM) are relatively uniform. The maximum error between the calculated acceleration maximum value and the actual acceleration value felt by the pedestrian is less than 5%. These results can provide reference for quantitative evaluation of pedestrian-induced vibration comfort.

Cite this article

Download citation ▾
Yuhao Feng, Deyi Chen, Zhenyu Wang, Shiping Huang, Yuejie He. Vibration response analysis of footbridge based on pedestrian perception. Advances in Bridge Engineering, 2023, 4(1): 0 https://doi.org/10.1186/s43251-023-00085-2
Funding
Project of National Natural Science Foundation(11911530692); Hubei Provincial Department of Education(Q20221305)

Accesses

Citations

Detail

Sections
Recommended

/