Facile and Tunable Ligand Engineering of Nanofiber-Embedded Perovskite Quantum Dots for Ammonia Sensing

Yonghyeon Park , Hanseung Kim , Kugalur S. Ranjith , Moein Safarkhani , Minju Kim , Jungjoo Lee , Soobin Han , Ju Eun Bae , Hyeonho Jeong , Jinhee Park , Young-Kyu Han , Kwangsoo Shin , Yun Suk Huh

Advanced Fiber Materials ›› : 1 -13.

PDF
Advanced Fiber Materials ›› :1 -13. DOI: 10.1007/s42765-025-00668-w
Research Article
research-article

Facile and Tunable Ligand Engineering of Nanofiber-Embedded Perovskite Quantum Dots for Ammonia Sensing

Author information +
History +
PDF

Abstract

Lead halide perovskite quantum dots (QDs) have emerged as a promising material in various optoelectric devices. However, their fabrication and direct patterning remain challenging due to the intrinsic susceptibility of perovskite QDs. Thus, a chemically mild and facile patterning method is required for advancement in QD applications. Herein, we developed a laser-assisted ligand engineering method that enables facile and precise, non-destructive surface modification of QDs. By employing a mid-IR CO2 laser, surface ligands were selectively removed, resulting in precise modulation of optical and chemical properties without disrupting the nanostructure. This solvent- and mask-free patterning technique offers rapid processing and facile spatial control compared with conventional chemical approaches. We demonstrated the application of this technique in the fabrication of a QD-based fluorescent sensing platform. The laser-assisted ligand engineering enabled CsPbBr3 perovskite-embedded nanofibers to exhibit a dual-mode fluorescent response to gaseous ammonia, with a detection limit of 0.152 ppm for fluorescence quenching and 0.6 ppm for enhancement. This approach enables direct patterning of visually responsive sensors, highlighting their potential for integrated detection and display.

Graphical Abstract

Keywords

Perovskite quantum dots / CsPbBr3 lead halide perovskite / Ligand engineering / Laser patterning / Fluorescence sensors / Ammonia detection

Cite this article

Download citation ▾
Yonghyeon Park, Hanseung Kim, Kugalur S. Ranjith, Moein Safarkhani, Minju Kim, Jungjoo Lee, Soobin Han, Ju Eun Bae, Hyeonho Jeong, Jinhee Park, Young-Kyu Han, Kwangsoo Shin, Yun Suk Huh. Facile and Tunable Ligand Engineering of Nanofiber-Embedded Perovskite Quantum Dots for Ammonia Sensing. Advanced Fiber Materials 1-13 DOI:10.1007/s42765-025-00668-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ranjith KS, Ghoreishian SM, Park B, Lee H, Chodankar NR, Raju GSR, Huh YS, Han YK. Fluorescence light-up electrospun membrane incorporated with perovskite nanoclusters as a highly sensitive colorimetric probe for detection of amine vapors during food spoilage. Sens Actuators B Chem, 2023, 384 133622

[2]

Huang H, Hao M, Song Y, Dang S, Liu X, Dong Q. Dynamic passivation in perovskite quantum dots for specific ammonia detection at room temperature. Small, 2020, 16: 1904462

[3]

Lv K, Li Z, Huang X, Cheng Z, Wang Z, Zhao H. CsPbBr3 perovskite-based heterostructures in photocatalysis: mechanisms, stability, and multifunctional performance. Adv Sci, 2025, 12 e07747

[4]

Goldreich A, Prilusky J, Prasad N, Puravankara A, Yadgarov L. Highly stable CsPbBr 3@MoS2 nanostructures: synthesis and optoelectronic properties toward implementation into solar cells. Small, 2024, 20: 2404727

[5]

Yi J, Leung TL, Digweed J, Bing J, Bailey C, Liao C, Tao R, Wang G, Li Z, Nguyen HT, McCamey DR, Zheng J, Mahmud MA, Ho-Baillie AWY. CO₂ laser crystallization in ambient for highly efficient FAPbI₃ perovskite solar cells. Small, 2024, 20: 2402215

[6]

Le QV, Hong K, Jang HW, Kim SY. Halide perovskite quantum dots for light-emitting diodes: properties, synthesis, applications, and outlooks. Adv Electron Mater, 2018, 4: 1800335

[7]

Cherepakhin A, Zhizhchenko A, Khmelevskaia D, Logunov L, Kuchmizhak A, Makarov S. Advanced laser nanofabrication technologies for perovskite photonics. Adv Opt Mater, 2024, 12 2302782

[8]

Peighambardoust NS, Sadeghi E, Aydemir U. Lead halide perovskite quantum dots for photovoltaics and photocatalysis: a review. ACS Appl Nano Mater, 2022, 5: 14092

[9]

Kramer IJ, Minor JC, Moreno-Bautista G, Rollny L, Kanjanaboos P, Kopilovic D, Thon SM, Carey GH, Chou KW, Zhitomirsky D, Amassian A, Sargent EH. Efficient spray-coated colloidal quantum dot solar cells. Adv Mater, 2015, 27 116

[10]

Wang C, Yan L, Si J, Wang N, Li T, Hou X. Exceptional stability against water, UV light, and heat for CsPbBr 3@Pb-MOF composites. Small Methods, 2024, 8: 2400241

[11]

Ding S, Hao M, Lin T, Bai Y, Wang L. Ligand engineering of perovskite quantum dots for efficient and stable solar cells. J Energy Chem, 2022, 69 626

[12]

Lu J, Wu J, Carvalho A, Ziletti A, Liu H, Tan J, Chen Y, Castro Neto AH, Özyilmaz B, Sow CH. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano, 2015, 9 10411

[13]

Richter JM, Branchi F, Camargo FVA, Zhao B, Friend RH, Cerullo G, Deschler F. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat Commun, 2017, 8 376

[14]

Baryshnikova K, Gets D, Liashenko T, Pushkarev A, Mukhin I, Kivshar Y, Makarov S. Broadband antireflection with halide perovskite metasurfaces. Laser Photon Rev, 2020, 14 2000338

[15]

Chu Z, Yang M, Schulz P, Wu D, Ma X, Seifert E, Sun L, Li X, Zhu K, Lai K. Impact of grain boundaries on efficiency and stability of organic–inorganic trihalide perovskites. Nat Commun, 2017, 8: 2230

[16]

Palneedi H, Park JH, Maurya D, Peddigari M, Hwang GT, Annapureddy V, Kim JW, Choi JJ, Hahn BD, Priya S, Lee KJ, Ryu J. Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater, 2018, 30 1705148

[17]

Sun K, Tan D, Fang X, Xia X, Lin D, Song J, Lin Y, Liu Z, Gu M, Yue Y, Qiu J. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 2022, 375: 307

[18]

Zhang Q, Wang Y, Zhang H, Lei J. High-stability flexible patterned perovskite optoelectronic structures fabricated by a laser pyrolysis assisted process. Adv Mater Technol, 2023, 8 2300741

[19]

Ruan X, Wang R, Luo J, Yao Y, Liu T. Experimental and modeling study of CO2 laser writing induced polyimide carbonization process. Mater Des, 2018, 160 1168

[20]

Zhao J, Yi N, Ding X, Liu S, Zhu J, Castonguay AC, Gao Y, Zarzar LD, Cheng H. In situ laser-assisted synthesis and patterning of graphene foam composites as a flexible gas sensing platform. Chem Eng J, 2023, 456 140956

[21]

Lim H, Kwon H, Jang JE, Kwon H-J. Intelligent olfactory system utilizing in situ ceria nanoparticle-integrated laser-induced graphene. ACS Nano, 2025, 19: 17850

[22]

Ferrucci F. Design and implementation of the safety system of a solar-driven smart micro-grid comprising hydrogen production for electricity and cooling co-generation. Int J Hydrogen Energy, 2024, 51: 1096

[23]

Ding T-T, Du S-L, Huang Z-Y, Wang Z-J, Zhang J, Zhang Y-H, Liu S-S, He L-S. Water quality criteria and ecological risk assessment for ammonia in the Shaying River Basin, China. Ecotoxicol Environ Saf, 2021, 215 112141

[24]

Alenezy EK, Kandjani AE, Shaibani M, Trinchi A, Bhargava SK, Ippolito SJ, Sabri Y. Human breath analysis; clinical application and measurement: an overview. Biosens Bioelectron, 2025, 278 117094

[25]

Vighnesh K, Wang S, Liu H, Rogach AL. Hot-injection synthesis protocol for green-emitting cesium lead bromide perovskite nanocrystals. ACS Nano, 2022, 16: 19618

[26]

De Giorgi ML, Perulli A, Yantara N, Boix PP, Anni M. Amplified spontaneous emission properties of solution processed CsPbBr₃ perovskite thin films. J Phys Chem A, 2017, 121: 14772

[27]

Liu L, Zhou S, Luo L, Zheng J, Ji L. The controlled synthesis of porous silver structure on carbon fibres and their sterilization performance. J Mater Sci, 2022, 57: 6335

[28]

Huang F, Lu Y, Chen L, Liu L, Jiang J. A new polyacrylonitrile fiber for direct carbonization without oxidation. J Mater Sci, 2018, 53: 8232

[29]

Shi Y, Li R, Yin G, Zhang X, Yu X, Meng B, Wei Z, Chen R. Laser-induced secondary crystallization of CsPbBr₃ perovskite film for robust and low threshold amplified spontaneous emission. Adv Funct Mater, 2022, 32 2207206

[30]

Woo JY, Kim Y, Bae J, Kim TG, Kim JW, Lee DC, Jeong S. Highly stable Cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem Mater, 2017, 29: 7088

[31]

Liu J, Song K, Shin Y, Liu X, Chen J, Yao KX, Pan J, Yang C, Yin J, Xu LJ, Yang H, El-Zohry AM, Xin B, Mitra S, Hedhili MN, Roqan IS, Mohammed OF, Han Y, Bakr OM. Light-induced self-assembly of cubic CsPbBr₃ perovskite nanocrystals into nanowires. Chem Mater, 2019, 31: 6642

[32]

Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394: 456

[33]

Furushima Y, Nakada M, Takahashi H, Ishikiriyama K. Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer, 2014, 55: 3075

[34]

Yao S-S, Lee S-Y, Li H-L, Jin F-L, Park S-J. Enhanced thermal conductivity of carbon fibers/silanized graphene/epoxy matrix composites. Carbon Lett, 2024, 34: 647

[35]

Huang Y, Zhang J, Zhang X, Jian J, Zou J, Jin Q, Zhang X. The ammonia detection of cesium lead halide perovskite quantum dots in different halogen ratios at room temperature. Opt Mater, 2022, 134 113155

[36]

Zaccaria F, Zhang B, Goldoni L, Imran M, Zito J, van Beek B, Lauciello S, De Trizio L, Manna L, Infante I. The reactivity of CsPbBr₃ nanocrystals toward acid/base ligands. ACS Nano, 2022, 16: 1444

[37]

Xu L, Li J, Cai B, Song J, Zhang F, Fang T, Zeng H. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat Commun, 2020, 11: 3902

[38]

Koscher BA, Swabeck JK, Bronstein ND, Alivisatos AP. Essentially trap-free CsPbBr₃ colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J Am Chem Soc, 2017, 139: 6566

[39]

Udayabhaskararao T, Kazes M, Houben L, Lin H, Oron D. Structural transformations of perovskite nanocrystals. Chem Mater, 2017, 29: 1302

[40]

De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins JC, Van Driessche I, Kovalenko MV, Hens Z. Highly dynamic ligand binding and light absorption coefficient of Cesium lead bromide perovskite nanocrystals. ACS Nano, 2016, 10: 2071

[41]

Ruan S, Lu J, Pai N, Ebendorff-Heidepriem H, Cheng YB, Ruan Y, McNeill CR. An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. J Mater Chem C, 2018, 6: 6988

[42]

Chen C, Wang X, Li Z, Du X, Shao Z, Sun X, Liu D, Gao C, Hao L, Zhao Q, Zhang B, Cui G, Pang S. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew Chem Int Ed, 2022, 61 e202113932

[43]

Yong ZJ, Guo SQ, Ma JP, Zhang JY, Li ZY, Chen YM, Zhang BB, Zhou Y, Shu J, Gu JL, Zheng LR, Bakr OM, Sun HT. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc, 2018, 140: 9942

[44]

Senden T, Rabouw FT, Meijerink A. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals. ACS Nano, 2015, 9: 1801

[45]

Bai J, Shen Y, Wang W, Wu M, Xiao H, Zhao Q, Zhao S, Yuan Z, Meng F. Highly sensitive room-temperature ammonia sensor based on PbS quantum dots modified SnS2 nanosheets and theoretical investigation on its sensing mechanism by DFT calculation. Appl Surf Sci, 2025, 680 161324

[46]

Liu M, Myllys N, Han Y, Wang Z, Chen L, Liu W, Xu J. Microscopic insights into the formation of methanesulfonic acid–methylamine–ammonia particles under acid-rich conditions. Front Ecol Evol. 2022;10.

[47]

Ono K, Sung M, Peng Y, Ha S-J, Jeon Y-P, Ikuya T, Shusaku H, Kang F, Yi H, Park J-I, Nakabayashi K, Miyawaki J, Yoon S-H. Improvement of tensile strength and anti-oxidation property of graphite electrode for electric arc furnace through heterogenization of binder pitch. Carbon Lett, 2024, 34: 1981

[48]

Chen Y, Qin F, Wang J, Yang K, Li Y, Bai G. Enhancing luminescence and thermal stability of CsPbBr 3 quantum dot glasses through doping with Eu3+ ions. ACS Appl Nano, 2025, 8: 3608

[49]

Wu X, Niu M, Tian X, Peng X, Buenconsej PJS, Wu X, Wang Y, Ji W, Li Y, Qiao J, Tao J, Zhang M, Xiao S, Yuan H. Solution-processable Ni3(HITP)2/MXene heterostructures for ppb-level gas detection. J Mater Chem A, 2024, 12: 17382

[50]

Ranjith KS, Sonwal S, Mohammadi A, Raju GSR, Huh YS, Han Y-K. Engineering a surface functionalized Pt@SnS2/Ti3C2Tx MXene sensor with humidity tolerance and high sensitivity at room temperature for NH3 detection. J Mater Chem A, 2025, 13: 2950

[51]

Arkoti NK, Pal K. Selective detection of NH3 gas by Ti3C2Tx sensors with the PVDF-ZIF-67 overlayer at room temperature. ACS Sens, 2024, 9: 1465

[52]

Ranjith KS, Sonwal S, Mohammadi A, Seeta Rama Raju G, Oh M-H, Huh YS, Han Y-K. Imparting hydrophobicity to a MOF on layered MXene for the selective, rapid, and ppb level humidity-independent detection of NH3 at room temperature. J Mater Chem A, 2024, 12 26132

[53]

Kim S, Kim Y, Kim J, Kim SJ, Kim T, Sim J, Jun SE, Lim J, Eom TH, Lee HS, Lee G-H, Hong BH, Oh M-H, Huh YS, Jang HW. Highly selective ammonia detection in NiO-functionalized graphene micropatterns for beef quality monitoring. Adv Funct Mater, 2024, 34 2407885

[54]

Xu X, Meng W, Kong F, Yan B, Zheng S, Li X, Zhu J, He Z, Li Y, Meng W, Dai L, Wang L. Development of electrochemical NH3 sensors with large sensitivity depending on the superposition enhancement effect of sensing electrodes. Chem Eng J, 2025, 507 160603

[55]

Assafiri A, Jia C, Thomas DS, Hibbert DB, Zhao C. Fast and sensitive detection of ammonia from electrochemical nitrogen reduction reactions by 1H NMR with radiation damping. Small Methods, 2024, 8: 2301373

[56]

He X, Yu C, Yu M, Lin J, Li Q, Fang Y, Liu Z, Xue Y, Huang Y, Tang C. Synthesis of perovskite CsPbBr 3 quantum dots/porous boron nitride nanofiber composites with improved stability and their reversible optical response to ammonia. Inorg Chem, 2020, 59: 1234

[57]

Park B, Kim S, Kwak CH, Shanmugam KR, Han Y-K, Cho Y, Huh YS. Visual colorimetric detection of ammonia under gaseous and aqueous state: approach on cesium lead bromide perovskite-loaded porous electrospun nanofibers. J Ind Eng Chem, 2021, 97 515

[58]

Huangfu C, Wang Y, Wang Z, Hu Q, Feng L. A stable and humidity resistant NH3 sensor based on luminous CsPbBr 3 perovskite nanocrystals. Talanta, 2023, 253 124070

[59]

Ahmad I, Abohashrh M, Rahim A, Ahmad S, Muhmood T, Wen H. Surface crafting and entrapment of CsPbBr 3 perovskite QDs in ZIF-8 for ammonia recognition. Spectrochim Acta A Mol Biomol Spectrosc, 2023, 302 123091

[60]

Wu W, Zhao C, Hu M, Pan A, Xiong W, Chen Y. CsPbBr 3 perovskite quantum dots grown within Fe-doped zeolite X with improved stability for sensitive NH3 detection. Nanoscale, 2023, 15: 5705

[61]

Sung T-W, Lo Y-L. Ammonia vapor sensor based on CdSe/SiO2 core–shell nanoparticles embedded in sol–gel matrix. Sens Actuators B, 2013, 188: 702

[62]

An JW, Hyeong S-K, Kim KM, Lee HR, Park J-W, Kim T-W, Bae S, Lee S-K. Facile synthesis of laser-induced graphene oxide and its humidity sensing properties. Carbon Lett, 2024, 34: 1173

[63]

Teku JA, Lee N, Taylor DA, Selvaraj J, Lee JS. Highly stable CsPbBr₃ perovskite quantum dots with ZnS shells from single-molecule precursors for optoelectronic devices. ACS Appl Nano Mater, 2024, 7: 20034

[64]

Guan M, Xie Y, Wang Y, He Z, Qiu L, Liu J, Chen K, Yan S, Li G, Dai Z. Enhanced emission efficiency in doped CsPbBr 3 perovskite nanocrystals: the role of ion valence. J Mater Chem C, 2022, 10: 14737

[65]

Patel M, Patel R, Park C, Cho K, Kumar P, Park C, Koh WG. Water-stable, biocompatible, and highly luminescent perovskite nanocrystals-embedded fiber-based paper for anti-counterfeiting applications. Nano Convergence, 2023, 10: 21

[66]

He M, Du W, Feng Y, Li S, Wang W, Zhang X, Yu A, Wan L, Zhai J. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy, 2021, 86 106058

[67]

Wang H, Li S, Zhang Y, Zhang M, Wang H, Liang X, Lu H, Zhang Y. A self-powered, shapeable, and wearable sensor for effective hazard prevention and biomechanical monitoring. SmartSys, 2025, 1 e3

[68]

Wang Y, Liu X, Li C, Wang W, Guo D, Jia M, Tian S, Wan L, Yu A, Zhai J. Scalable topological-entanglement conductive coaxial fibers with superior durability for wearable strain sensing and triboelectric fabric. J Mater Sci Technol, 2025, 233 154

[69]

Yang Z, Li J, Wu J, Zhou H, Hou W. Fabrication of flexible nitrogen-doped graphene micro-supercapacitors by laser-induced self-made precursors. Carbon Lett, 2024, 34: 1707

[70]

Kim B-H. Optimization of the TiO2 content and location in core–shell tubular carbon nanofibers to improve the photocatalytic activity under visible light irradiation. Carbon Lett, 2024, 34: 2211

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

/