Recent Advances and Prospects of MXene Fiber-Based Wearable Supercapacitors: Methods, Design, Applications to Beyond

Xiaolin Zhu , Yuanyuan Lü , Zongping Shao , Guan Wu , Wenxing Chen

Advanced Fiber Materials ›› : 1 -34.

PDF
Advanced Fiber Materials ›› :1 -34. DOI: 10.1007/s42765-025-00667-x
Review
review-article

Recent Advances and Prospects of MXene Fiber-Based Wearable Supercapacitors: Methods, Design, Applications to Beyond

Author information +
History +
PDF

Abstract

Fiber-based supercapacitors have gained considerable attention owing to their superior flexibility/deformability, high power density, and long lifespan, making them ideal for future electronic textiles and wearables. This review provides a comprehensive analysis of MXene-based fiber supercapacitors (MFSCs) with respect to energy storage mechanisms, manufacturing methods, structural design, performance optimization, and multifunctional applications. First, based on a theoretical analysis of the stability, rheological properties, and liquid crystallinity of MXene dispersions, multiple fiber fabrication strategies are proposed to achieve precise fibrous structural manipulations. Second, variously advanced fibrous nano/microstructures and their structure–activity relationships between structures and electrochemical performance are clarified to facilitate electron conduction, ion kinetic transport, and electrochemical energy storage. Third, multifunctional fabrics with high strength/flexibility and energy density that can be integrated into smart textiles, which indicate their potential applications in wearable electronic devices, are emphasized. Finally, this review provides insights into the current challenges and future perspectives for new-generation MFSCs.

Graphical Abstract

Keywords

Supercapacitors / MXene fibers/fabrics / Fabrication techniques / Structural design / Wearable applications

Cite this article

Download citation ▾
Xiaolin Zhu, Yuanyuan Lü, Zongping Shao, Guan Wu, Wenxing Chen. Recent Advances and Prospects of MXene Fiber-Based Wearable Supercapacitors: Methods, Design, Applications to Beyond. Advanced Fiber Materials 1-34 DOI:10.1007/s42765-025-00667-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang B, Li J, Zhou J, Chow L, Zhao G, Huang Y, Ma Z, Zhang Q, Yang Y, Yiu CK, Li J, Chun F, Huang X, Gao Y, Wu P, Jia S, Li H, Li D, Liu Y, Yao K, Shi R, Chen Z, Khoo BL, Yang W, Wang F, Zheng Z, Wang Z, Yu X. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature, 2024, 628: 84

[2]

Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem Rev, 2024, 124: 455

[3]

Brasier N, Wang J, Gao W, Sempionatto JR, Dincer C, Ates HC, Güder F, Olenik S, Schauwecker I, Schaffarczyk D, Vayena E, Ritz N, Weisser M, Mtenga S, Ghaffari R, Rogers JA, Goldhahn J. Applied body-fluid analysis by wearable devices. Nature, 2024, 636: 57

[4]

Saifi S, Xiao X, Cheng S, Guo H, Zhang J, Müller-Buschbaum P, Zhou G, Xu X, Cheng H-M. An ultraflexible energy harvesting-storage system for wearable applications. Nat Commun, 2024, 15: 6546

[5]

Chen S, Qiu L, Cheng H-M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev, 2020, 120: 2811

[6]

He J, Cao L, Cui J, Fu G, Jiang R, Xu X, Guan C. Flexible energy storage devices to power the future. Adv Mater, 2024, 36 2306090

[7]

Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem Rev, 2022, 122: 17155

[8]

Lei D, Zhang Z, Jiang L. Bioinspired 2d nanofluidic membranes for energy applications. Chem Soc Rev, 2024, 53: 2300

[9]

Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev, 2016, 45: 5925

[10]

Wu G, Wu X, Zhu X, Xu J, Bao N. Two-dimensional hybrid nanosheet-based supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. ACS Nano, 2022, 16: 10130

[11]

Ma W, Zhang Y, Pan S, Cheng Y, Shao Z, Xiang H, Chen G, Zhu L, Weng W, Bai H, Zhu M. Smart fibers for energy conversion and storage. Chem Soc Rev, 2021, 50: 7009

[12]

Hayat A, Sohail M, Alzahrani AYA, Ali H, Abu-Dief AM, Amin MS, Alenad AM, Al-Mhyawi SR, Al-Hadeethi Y, Ajmal Z, Guo S-R, Orooji Y. Recent advances in heteroatom-doped/hierarchical porous carbon materials: synthesis, design and potential applications. Prog Mater Sci, 2025, 150 101408

[13]

Yang J, Zhang Y, Ge Y, Tang S, Li J, Zhang H, Shi X, Wang Z, Tian X. Interlayer engineering of layered materials for efficient ion separation and storage. Adv Mater, 2024, 36 2311141

[14]

Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres—threads of intelligence—enable a new generation of wearable systems. Chem Soc Rev, 2024, 53: 8790

[15]

Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The reinforced separation of intractable gas mixtures by using porous adsorbents. Adv Mater, 2024, 36 2408416

[16]

Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: material design, extraction properties and mechanisms. Coord Chem Rev, 2023, 483 215097

[17]

Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent advances in carbon nanotube-based energy harvesting technologies. Adv Mater, 2023, 35 2303035

[18]

Cai Y, Hu Z, Cheng L, Guo S, Liu T, Huang S, Chen D, Wang Y, Yu H, Zhou Y. Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions. Front Energy, 2024, 18 612

[19]

Yu L, Chen X, Yao N, Gao Y-C, Yuan Y-H, Gao Y-B, Tang C, Zhang Q. Advanced carbon as emerging energy materials in lithium batteries: a theoretical perspective. InfoMat, 2025

[20]

Wang F, Fang WZ, Ming X, Liu YJ, Xu Z, Gao C. A review on graphene oxide: 2d colloidal molecule, fluid physics, and macroscopic materials. Appl Phys Rev, 2023, 10 011311

[21]

Chen X, Zhao S, Kang X, He C, Zhao P, Meng X, Ragauskas AJ, Pang J, Song X. Gradient synthesis of carbon quantum dots and activated carbon from pulp black liquor for photocatalytic hydrogen evolution and supercapacitor. Adv Compos Hybrid Mater, 2023, 6: 131

[22]

El-Azazy M, Osman AI, Nasr M, Ibrahim Y, Al-Hashimi N, Al-Saad K, Al-Ghouti MA, Shibl MF, Al-Muhtaseb AaH, Rooney DW, El-Shafie AS. The interface of machine learning and carbon quantum dots: from coordinated innovative synthesis to practical application in water control and electrochemistry. Coord Chem Rev, 2024, 517 215976

[23]

Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and graphdiynes for energy storage and catalytic utilization: theoretical insights into recent advances. Chem Rev, 2023, 123: 4795

[24]

Li J, Cao H, Wang Q, Zhang H, Liu Q, Chen C, Shi Z, Li G, Kong Y, Cai Y, Shen J, Wu Y, Lai Z, Han Y, Zhang J. Space-confined synthesis of monolayer graphdiyne in mxene interlayer. Adv Mater, 2024, 36 2308429

[25]

Zhou K, Shang G, Hsu H-H, Han S-T, Roy VAL, Zhou Y. Emerging 2d metal oxides: from synthesis to device integration. Adv Mater, 2023, 35 2207774

[26]

Zhu L-Y, Ou L-X, Mao L-W, Wu X-Y, Liu Y-P, Lu H-L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett, 2023, 15: 89

[27]

Wang J, Lin S, Tian N, Ma T, Zhang Y, Huang H. Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Adv Funct Mater, 2021, 31 2008008

[28]

Chen B, Sui S, He F, He C, Cheng H-M, Qiao S-Z, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev, 2023, 52: 7802

[29]

Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev, 2022, 51: 6126

[30]

Lu X, Xue H, Gong H, Bai M, Tang D, Ma R, Sasaki T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett, 2020, 12: 86

[31]

Dai J, Yang C, Xu Y, Wang X, Yang S, Li D, Luo L, Xia L, Li J, Qi X, Cabot A, Dai L. MoS2@polyaniline for aqueous ammonium-ion supercapacitors. Adv Mater, 2023, 35 2303732

[32]

Zuo C, Chao F, Li M, Dai Y, Wang J, Xiong F, Jiang Y, An Q. Improving ca-ion storage dynamic and stability by interlayer engineering and mn-dissolution limitation based on robust MnO2@pani hybrid cathode. Adv Energy Mater, 2023, 13 2301014

[33]

Guo J, Li L, Luo J, Gong W, Pan R, He B, Xu S, Liu M, Wang Y, Zhang B, Wang C, Wei L, Zhang Q, Li Q. Polypyrrole-assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc-ion battery. Adv Energy Mater, 2022, 12 2201481

[34]

Li S, Wu B, Wang S, Jiang M, Pan C, Dong Y, Xu W, Yu H, Tam KC. Multi-level high entropy-dissipative structure enables efficient self-decoupling of triple signals. Adv Mater, 2025, 37 2406054

[35]

Li Y, Pang Y, Wang L, Li Q, Liu B, Li J, Liu S, Zhao Q. Boosting the performance of pedot:pss based electronics via ionic liquids. Adv Mater, 2024, 36 2310973

[36]

Wang Y, Geng Q, Lyu H, Sun W, Fan X, Ma K, Wu K, Wang J, Wang Y, Mei D, Guo C, Xiu P, Pan D, Tao K. Bioinspired flexible hydrogelation with programmable properties for tactile sensing. Adv Mater, 2024, 36 2401678

[37]

Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. Mxene chemistry, electrochemistry and energy storage applications. Nat Rev Chem, 2022, 6: 389

[38]

Zhao Y, Zhang J, Guo X, Cao X, Wang S, Liu H, Wang G. Engineering strategies and active site identification of mxene-based catalysts for electrochemical conversion reactions. Chem Soc Rev, 2023, 52: 3215

[39]

Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2d MXenes in energy conversion and storage systems. Chem Soc Rev, 2019, 48: 72

[40]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372 eabf1581

[41]

Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2d MXenes. Adv Mater, 2021, 33 2103148

[42]

Cao X, Liu Y, Xia H, Li Y, Yang L, Wang H, Zhang H, Ye B, He W, Wei T, Xin Z, Lu C, Zhou M, Sun Z. Pushing theoretical potassium storage limits of mxenes through introducing new carbon active sites. Adv Mater, 2024, 36 2408723

[43]

Li P, Wang Z, Cai G, Zhao Y, Deng Z, Wang B, Li Z, Ming X, Gao W, Xu Z, Xu Z, Liu Y, Gao C. High-performance graphene-based carbon fibres prepared at room temperature via domain folding. Nat Mater, 2025

[44]

Xu S, Zhang X, Zheng T, Zhao Z, Shang C, Hu Z, Dong M, Qiao Y, Bai C, Zhang X, Sun G, Wang X. Advancements in high-performance mxene composite fibers integrated with various functional materials: fabrication, functionalization, property enhancement, and applications. J Mater Sci Technol, 2026, 252: 57

[45]

Usman KAS, Zhang J, Bi L, Seyedin S, Wang X, Gogotsi Y, Razal JM. The future of MXene fibers. Adv Mater, 2025, 37 2506437

[46]

Wang Y, Guo T, Tian Z, Bibi K, Zhang Y-Z, Alshareef HN. Mxenes for energy harvesting. Adv Mater, 2022, 34 2108560

[47]

Gao L, Bao W, Kuklin AV, Mei S, Zhang H, Ågren H. Hetero-MXenes: theory, synthesis, and emerging applications. Adv Mater, 2021, 33 2004129

[48]

Zhang J, Seyedin S, Qin S, Wang Z, Moradi S, Yang F, Lynch PA, Yang W, Liu J, Wang X, Razal JM. Highly conductive Ti3C2TX MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small, 2019, 15: 1804732

[49]

Zhou Z, Li P, Man Z, Zhu X, Ye S, Lu W, Wu G, Chen W. Multiscale dot-wire-sheet heterostructured nitrogen-doped carbon dots-Ti3C2TX/silk nanofibers for high-performance fiber-shaped supercapacitors. Angew Chem Int Ed, 2023, 62 e202301618

[50]

Li L, Ding X, Shan S, Chen S, Zhang Y, Zhang C, Huang C, Duan M, Xu K, Zhang X, Wu T, Zhao Z, Liu Y, Xu Y. Reversible fusion–fission MXene fiber-based microelectrodes for target-specific gram-positive and gram-negative bacterium discrimination. Anal Chem, 2024, 96: 9317

[51]

Wyatt BC, Rosenkranz A, Anasori B. 2D MXenes: tunable mechanical and tribological properties. Adv Mater, 2021, 33 2007973

[52]

Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev, 2020, 49: 6666

[53]

Helmholtz H. Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern, mit anwendung auf die thierisch-elektrischen versuche (schluss.). Ann Phys (Berl), 1853, 165: 353

[54]

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845

[55]

Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sustain Energy Rev, 2019, 101: 123

[56]

Li H, Li X, Liang J, Chen Y. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater, 2019, 9 1803987

[57]

Wang J, Guo W, Liu Z, Zhang Q. Engineering of self-aggregation-resistant MnO2 heterostructure with a built-in field for enhanced high-mass-loading energy storage. Adv Energy Mater, 2023, 13 2300224

[58]

Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3d graphene/nanostructured conductive polymer hydrogels. Adv Mater, 2018, 30: 1800124

[59]

Nasrin K, Sudharshan V, Subramani K, Sathish M. Insights into 2d/2d mxene heterostructures for improved synergy in structure toward next-generation supercapacitors: a review. Adv Funct Mater, 2022, 32 2110267

[60]

Owusu KA, Wang Z, Saad A, Boakye FO, Mushtaq MA, Tahir M, Yasin G, Liu D, Peng Z, Cai X. Room temperature synthesis of vertically aligned amorphous ultrathin NiCo-LDH nanosheets bifunctional flexible supercapacitor electrodes. Energy Environ Mater, 2024, 7 e12545

[61]

Zheng Y, Wang Y, Liu D, Zhao J, Li Y. Unlocking self-antioxidant capability and processability of additive-free MXene ink towards high-performance customizable supercapacitors. Angew Chem Int Ed, 2025, 64 e202415742

[62]

Hu X, Gong N, Zhang Q, Chen Q, Xie T, Liu H, Li Y, Li Y, Peng W, Zhang F, Fan X. N-terminalized Ti3C2TX MXene for supercapacitor with extraordinary pseudocapacitance performance. Small, 2024, 20: 2306997

[63]

Zhu Q, Li J, Simon P, Xu B. Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater, 2021, 35: 630

[64]

Ma R, Chen Z, Zhao D, Zhang X, Zhuo J, Yin Y, Wang X, Yang G, Yi F. Ti3C2TX MXene for electrode materials of supercapacitors. J Mater Chem A, 2021, 9: 11501

[65]

Wang X, Mathis TS, Li K, Lin Z, Vlcek L, Torita T, Osti NC, Hatter C, Urbankowski P, Sarycheva A, Tyagi M, Mamontov E, Simon P, Gogotsi Y. Influences from solvents on charge storage in titanium carbide MXenes. Nat Energy, 2019, 4: 241

[66]

Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M, Yamada A. Sodium-ion intercalation mechanism in mxene nanosheets. ACS Nano, 2016, 10 3334

[67]

Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 2013, 4 1716

[68]

Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum MW. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem Mater, 2016, 28 3507

[69]

Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy, 2017, 2 17105

[70]

Wan J, Wang R, Liu Z, Zhang L, Liang F, Zhou T, Zhang S, Zhang L, Lu Q, Zhang C, Guo Z. A double-functional additive containing nucleophilic groups for high-performance zn-ion batteries. ACS Nano, 2023, 17 1610

[71]

Liang G, Mo F, Ji X, Zhi C. Non-metallic charge carriers for aqueous batteries. Nat Rev Mater, 2021, 6: 109

[72]

Gao Q, Sun W, Ilani-Kashkouli P, Tselev A, Kent PRC, Kabengi N, Naguib M, Alhabeb M, Tsai W-Y, Baddorf AP, Huang J, Jesse S, Gogotsi Y, Balke N. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ Sci, 2020, 13: 2549

[73]

Wang X, Shen X, Gao Y, Wang Z, Yu R, Chen L. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J Am Chem Soc, 2015, 137: 2715

[74]

Gogotsi Y, Penner RM. Energy storage in nanomaterials – capacitive, pseudocapacitive, or battery-like?. ACS Nano, 2018, 12: 2081

[75]

Lukatskaya MR, Bak S-M, Yu X, Yang X-Q, Barsoum MW, Gogotsi Y. Probing the mechanism of high capacitance in 2d titanium carbide using in situ x-ray absorption spectroscopy. Adv Energy Mater, 2015, 5: 1500589

[76]

Hu M, Li Z, Hu T, Zhu S, Zhang C, Wang X. High-capacitance mechanism for Ti3C2TX MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano, 2016, 10: 11344

[77]

Zhang D, Wang R, Wang X, Gogotsi Y. In situ monitoring redox processes in energy storage using uv–vis spectroscopy. Nat Energy, 2023, 8: 567

[78]

Yang R, Fan Y, Mei L, Shin HS, Voiry D, Lu Q, Li J, Zeng Z. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat Synth, 2023, 2: 101

[79]

Li J, Yang X, Zhang Z, Yang W, Duan X, Duan X. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. Nat Mater, 2024, 23: 1326

[80]

Chen J, Zhang W, Chen R, Dai Y, Zhang J, Yang H, Zong W, Jiang Z, Zhong Y, Wang J, Zhang X, He G. From synthesis to energy storage, the microchemistry of MXene and MBene. Adv Energy Mater, 2024

[81]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23 4248

[82]

Zhu K, Jin Y, Du F, Gao S, Gao Z, Meng X, Chen G, Wei Y, Gao Y. Synthesis of Ti2CTx mxene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. J Energy Chem, 2019, 31 11

[83]

VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano, 2017, 11: 11135

[84]

Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW. New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries. J Am Chem Soc, 2013, 135: 15966

[85]

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano, 2012, 6: 1322

[86]

Tao Q, Dahlqvist M, Lu J, Kota S, Meshkian R, Halim J, Palisaitis J, Hultman L, Barsoum MW, Persson POÅ, Rosen J. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3d laminate with in-plane chemical ordering. Nat Commun, 2017, 8 14949

[87]

Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014, 516: 78

[88]

Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh PL, Zhao M, Shenoy VB, Barsoum MW, Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8: 11385

[89]

Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Fluorine-free synthesis of high-purity Ti3C2T (T=OH, O) via alkali treatment. Angew Chem Int Ed, 2018, 57: 6115

[90]

Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2TZ MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem, 2020, 6: 616

[91]

Shi H, Zhang P, Liu Z, Park S, Lohe MR, Wu Y, Shaygan Nia A, Yang S, Feng X. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew Chem Int Ed, 2021, 60: 8689

[92]

Jawaid A, Hassan A, Neher G, Nepal D, Pachter R, Kennedy WJ, Ramakrishnan S, Vaia RA. Halogen etch of Ti3AlC2 MAX phase for mxene fabrication. ACS Nano, 2021, 15 2771

[93]

Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, Blom PWM, Feng X. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed, 2018, 57 15491

[94]

Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson POÅ, Du S, Chai Z, Huang Z, Huang Q. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated max phases and mxenes. J Am Chem Soc, 2019, 141 4730

[95]

Sun Z, Yuan M, Lin L, Yang H, Nan C, Li H, Sun G, Yang X. Selective lithiation–expansion–microexplosion synthesis of two-dimensional fluoride-free MXene. ACS Mater Lett, 2019, 1: 628

[96]

Wang D, Zhou C, Filatov AS, Cho W, Lagunas F, Wang M, Vaikuntanathan S, Liu C, Klie RF, Talapin DV. Direct synthesis and chemical vapor deposition of 2d carbide and nitride MXenes. Science, 2023, 379: 1242

[97]

Xu Z, Gao C. Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc Chem Res, 2014, 47: 1267

[98]

Zhang J, Uzun S, Seyedin S, Lynch PA, Akuzum B, Wang Z, Qin S, Alhabeb M, Shuck CE, Lei W, Kumbur EC, Yang W, Wang X, Dion G, Razal JM, Gogotsi Y. Additive-free MXene liquid crystals and fibers. ACS Cent Sci, 2020, 6: 254

[99]

Lee C, Park SM, Kim S, Choi Y-S, Park G, Kang YC, Koo CM, Kim SJ, Yoon DK. Field-induced orientational switching produces vertically aligned Ti3C2TX MXene nanosheets. Nat Commun, 2022, 13: 5615

[100]

Xia Y, Mathis TS, Zhao M-Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557: 409

[101]

Akuzum B, Maleski K, Anasori B, Lelyukh P, Alvarez NJ, Kumbur EC, Gogotsi Y. Rheological characteristics of 2d titanium carbide (MXene) dispersions: a guide for processing mxenes. ACS Nano, 2018, 12: 2685

[102]

Eom W, Shin H, Ambade RB, Lee SH, Lee KH, Kang DJ, Han TH. Large-scale wet-spinning of highly electroconductive mxene fibers. Nat Commun, 2020, 11: 2825

[103]

Tan H, Sun L, Huang H, Zhang L, Neisiany RE, Ma X, You Z. Continuous melt spinning of adaptable covalently cross-linked self-healing ionogel fibers for multi-functional ionotronics. Adv Mater, 2024, 36 2310020

[104]

Liu F, Pan L, Liu Y, Zhai G, Sha Z, Zhang X, Zhang Z, Liu Q, Yu S, Zhu L, Xiang H, Zhou Z, Zhu M. Biobased fibers from natural to synthetic: processing, manufacturing, and application. Matter, 2024, 7: 1977

[105]

Guo X, Zhang Y, Li J, Hao Y, Ke H, Lv P, Wei Q. Wet spinning technology for aerogel fiber: pioneering the frontier of high-performance and multifunctional materials. Adv Fiber Mater, 2024, 6: 1669

[106]

Li W, Liu J, Wei J, Yang Z, Ren C, Li B. Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives. Adv Funct Mater, 2023, 33 2213485

[107]

Zhuang H, Zhang T, Xiao H, Zhang F, Han P, Gu H, Jiao J, Chen W, Gao Q. Free-standing cross-linked hollow carbonaceous nanovesicle fibers with atomically dispersed CoN4 electrocatalytic centers driving high-performance Li-S battery. Appl Catal, B, 2024, 340 123273

[108]

Wang J-X, Yang Y-L, Chen J-G, Shi X-L, Sun Y, Li P, Tian X, Zhang L, Suo G, Chen Z-G. Spatial confinement of Co1.67Te2 nanoparticles within porous carbon nanofibers enabling fast kinetics and stability for sodium dual-ion batteries. Energy Storage Mater, 2024, 71 103578

[109]

Sheng J, Han Z, Jia G, Zhu S, Xu Y, Zhang X, Yao Y, Li Y. Covalently bonded graphene sheets on carbon nanotubes: direct growth and outstanding properties. Adv Funct Mater, 2023, 33 2306785

[110]

Zhou X, Deng Q, Yu W, Liu K, Liu Z. The rise of graphene photonic crystal fibers. Adv Funct Mater, 2022, 32 2202282

[111]

Cao X, Wu G, Li K, Hou C, Li Y, Zhang Q, Wang H. High-performance Zn2+-crosslinked mxene fibers for versatile flexible electronics. Adv Funct Mater, 2024, 34 2407975

[112]

Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2TX MXene fibers using a deformable MXene gel. ACS Nano, 2021, 15: 3320

[113]

Wang H, Li R, Cao Y, Chen S, Yuan B, Zhu X, Cheng J, Duan M, Liu J. Liquid metal fibers. Adv Fiber Mater, 2022, 4: 987

[114]

Yang L, Pan L, Xiang H, Fei X, Zhu M. Organic–inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers. Chem Mater, 2022, 34: 2049

[115]

Zhang B, Lu C, Liu Y, Zhou P. Wet spun polyacrylontrile-based hollow fibers by blending with alkali lignin. Polymer, 2018, 149: 294

[116]

Yuan B, Yang B, Xu P, Zhang M. Poly(p-phenylene benzobisoxazole) nanofiber: a promising nanoscale building block toward extremely harsh conditions. ACS Nano, 2025, 19: 1981

[117]

Ming X, Wei A, Liu Y, Peng L, Li P, Wang J, Liu S, Fang W, Wang Z, Peng H, Lin J, Huang H, Han Z, Luo S, Cao M, Wang B, Liu Z, Guo F, Xu Z, Gao C. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv Mater, 2022, 34 2201867

[118]

Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182

[119]

Fang B, Yan J, Chang D, Piao J, Ma KM, Gu Q, Gao P, Chai Y, Tao X. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun, 2022, 13: 2101

[120]

Li P, Wang Z, Qi Y, Cai G, Zhao Y, Ming X, Lin Z, Ma W, Lin J, Li H, Shen K, Liu Y, Xu Z, Xu Z, Gao C. Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat Commun, 2024, 15: 409

[121]

Yin Q, Wang B, Cai G, Wang Z, Li P, Gao Y, Li K, Ming X, Liu Y, Gao C, Xu Z. Highly thermally conductive composites of graphene fibers. Compos Part A Appl Sci Manuf, 2024, 185 108290

[122]

Chi F, Chen H. Fabrication and characterization of zein/viscose textibe fibers. J Appl Polym Sci, 2010, 118: 3364

[123]

Yang J, Li M, Fang S, Wang Y, He H, Wang C, Zhang Z, Yuan B, Jiang L, Baughman RH, Cheng Q. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science, 2024, 383: 771

[124]

Wan S, Li X, Chen Y, Liu N, Wang S, Du Y, Xu Z, Deng X, Dou S, Jiang L, Cheng Q. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat Commun, 2022, 13: 7340

[125]

Zhang J, Seyedin S, Gu Z, Yang W, Wang X, Razal JM. MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9: 18604

[126]

Zhang C, Anasori B, Seral-Ascaso A, Park S-H, McEvoy N, Shmeliov A, Duesberg GS, Coleman JN, Gogotsi Y, Nicolosi V. Transparent, flexible, and conductive 2d titanium carbide (MXene) films with high volumetric capacitance. Adv Mater, 2017, 29 1702678

[127]

Uzun S, Seyedin S, Stoltzfus AL, Levitt AS, Alhabeb M, Anayee M, Strobel CJ, Razal JM, Dion G, Gogotsi Y. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater, 2019, 29 1905015

[128]

Zhang C, Kremer MP, Seral-Ascaso A, Park S-H, McEvoy N, Anasori B, Gogotsi Y, Nicolosi V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater, 2018, 28 1705506

[129]

Levitt A, Hegh D, Phillips P, Uzun S, Anayee M, Razal JM, Gogotsi Y, Dion G. 3D knitted energy storage textiles using MXene-coated yarns. Mater Today, 2020, 34 17

[130]

Wu P, Gu J, Liu X, Ren Y, Mi X, Zhan W, Zhang X, Wang H, Ji X, Yue Z, Liang J. A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear. Adv Mater, 2024, 36 2411131

[131]

Xu Z, Liu Y, Xin Q, Dai J, Yu J, Cheng L, Liu Y-T, Ding B. Ceramic meta-aerogel with thermal superinsulation up to 1700℃ constructed by self-crosslinked nanofibrous network via reaction electrospinning. Adv Mater, 2024, 36: 2401299

[132]

Chang J, Pang B, Zhang H, Pang K, Zhang M, Yuan J. MXene/cellulose composite cloth for integrated functions (if-cloth) in personal heating and steam generation. Adv Fiber Mater, 2024, 6: 252

[133]

Zhao H, Deng N, Kang W, Cheng B. Designing of multilevel-nanofibers-based organic–inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security. Chem Eng J, 2020, 390 124571

[134]

Xing L, Cheng H, Li Y, Chen Q, Liu C, Shen C, Liu X. MoS2 decorated on 1d MoS2@Co/NC@CF hierarchical fibrous membranes for enhanced microwave absorption. Small, 2025, 21: 2407337

[135]

Ye J, Ge T, Qu X, Mohideen MM, Wang C, Hu P, Liu Y. Spatial and electrostatic dual-confinement in hierarchical hollow Bi-Bi2O3@carbon nanofibers for dendrite suppression and side reaction mitigation in aqueous zinc-ion batteries. Adv Funct Mater, 2025, 35: 2425358

[136]

Xu J, Pi X, Qi K, Zhang S, Wang Y, Man Z, Yang C, Tang Q, An C, Zhang Y, Sun B, Zhang Y, Wu G. Chitosan derived nitrogen and oxygen dual-doped hierarchical porous carbon/Ti3C2TX MXene fiber for flexible cable shaped lithium-selenium battery. Int J Biol Macromol, 2024, 282 136836

[137]

Cheng H, Zuo T, Chen Y, Yu D, Wang W. High sensitive, stretchable and weavable fiber-based PVA/WPU/MXene materials prepared by wet spinning for strain sensors. J Mater Sci, 2023, 58: 13875

[138]

Huang Y, Chen S, Li Y, Lin Q, Wu Y, Shi Q. Flexible piezoelectric sensor based on PAN/MXene/PDA@ZnO composite film for human health and motion detection with fast response and highly sensitive. Chem Eng J, 2024, 488 150997

[139]

Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A, 2019, 7: 269

[140]

Lima MD, Fang S, Lepró X, Lewis C, Ovalle-Robles R, Carretero-González J, Castillo-Martínez E, Kozlov ME, Oh J, Rawat N, Haines CS, Haque MH, Aare V, Stoughton S, Zakhidov AA, Baughman RH. Biscrolling nanotube sheets and functional guests into yarns. Science, 2011, 331: 51

[141]

Lee DW, Yu S, Kim J, Choi C. Bifunctional carbon nanotube yarns fabricated using biscrolling technology for pseudocapacitors and paramagnetic actuators. Sens Actuators, A, 2022, 342 113623

[142]

Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed, 2014, 53 14564

[143]

Oh S, Kim KJ, Goh B, Park C-L, Lee GD, Shin S, Lim S, Kim ES, Yoon KR, Choi C, Kim H, Suh D, Choi J, Kim SH. Chemo-mechanical energy harvesters with enhanced intrinsic electrochemical capacitance in carbon nanotube yarns. Adv Sci, 2022, 9 2203767

[144]

Pal M, Subhedar KM. Cnt yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy Storage Mater, 2023, 57 136

[145]

Son W, Chun S, Lee JM, Jeon G, Sim HJ, Kim HW, Cho SB, Lee D, Park J, Jeon J, Suh D, Choi C. Twist-stabilized, coiled carbon nanotube yarns with enhanced capacitance. ACS Nano, 2022, 16 2661

[146]

Wang Z, Qin S, Seyedin S, Zhang J, Wang J, Levitt A, Li N, Haines C, Ovalle-Robles R, Lei W, Gogotsi Y, Baughman RH, Razal JM. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small, 2018, 14: 1802225

[147]

Zhang P, Zhang T. Perspectives of flexible thermoelectric fibers by thermal drawing techniques. Acc Mater Res, 2025, 6: 306

[148]

Wang Z, Wang Z, Li D, Yang C, Zhang Q, Chen M, Gao H, Wei L. High-quality semiconductor fibres via mechanical design. Nature, 2024, 626: 72

[149]

Zhou T, Cao C, Yuan S, Wang Z, Zhu Q, Zhang H, Yan J, Liu F, Xiong T, Cheng Q, Wei L. Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing. Adv Mater, 2023, 35 2305807

[150]

Jiang X, Ding T, Quan J, Wang R, Li W, Li M, Lan C, Ma W, Zhu M. Confined hydrothermal assembly of hierarchical porous MXene/rgo composite fibers with enhanced oxidation resistance for high-performance wearable supercapacitors. Small, 2025, 21: 2412378

[151]

Zhao T, Yang D, Hao S-M, Xu T, Zhang M, Zhou W, Yu Z-Z. Optimized electron/ion transport by constructing radially oriented channels in mxene hybrid fiber electrodes for high-performance supercapacitors at low temperatures. J Mater Chem A, 2023, 11: 1742

[152]

Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature, 2005, 437: 648

[153]

Liu J-D, Du X-Y, Chen S. A phase inversion-based microfluidic fabrication of helical microfibers towards versatile artificial abdominal skin. Angew Chem Int Ed, 2021, 60 25089

[154]

Peng R, Ba F, Li J, Cao J, Zhang R, Liu W-Q, Ren J, Liu Y, Li J, Ling S. Embedding living cells with a mechanically reinforced and functionally programmable hydrogel fiber platform. Adv Mater, 2023, 35 2305583

[155]

Zhang Z, Kong Y, Gao J, Han X, Lian Z, Liu J, Wang W-J, Yang X. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. Nanoscale, 2024, 16: 6383

[156]

Li S, Fan Z, Wu G, Shao Y, Xia Z, Wei C, Shen F, Tong X, Yu J, Chen K, Wang M, Zhao Y, Luo Z, Jian M, Sun J, Kaner RB, Shao Y. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano, 2021, 15: 7821

[157]

Zhang W, Ren S, Zhang Y, An C, Liu Y, Zhu X, Man Z, Liang X, Yang C, Lu W, Wu G. Bamboo-inspired hierarchically hollow aerogel mxene fibers with ultrafast ionic channels and multiple electromagnetic wave attenuation routes toward high-performance supercapacitors and microwave absorption. Small, 2025

[158]

Zhu X, Zhang Y, Man Z, Lu W, Chen W, Xu J, Bao N, Chen W, Wu G. Microfluidic-assembled covalent organic frameworks@Ti3C2TX MXene vertical fibers for high-performance electrochemical supercapacitors. Adv Mater, 2023, 35 2307186

[159]

Luo H, Kaneti YV, Ai Y, Wu Y, Wei F, Fu J, Cheng J, Jing C, Yuliarto B, Eguchi M, Na J, Yamauchi Y, Liu S. Nanoarchitectured porous conducting polymers: from controlled synthesis to advanced applications. Adv Mater, 2021, 33 2007318

[160]

Wang X, Xiao Z, Han K, Zhang X, Liu Z, Yang C, Meng J, Li M, Huang M, Wei X, Mai L. Advances in fine structure optimizations of layered transition-metal oxide cathodes for potassium-ion batteries. Adv Energy Mater, 2023, 13 2202861

[161]

Ali S, Bakhtiar SUH, Ismail A, Ismail PM, Hayat S, Zada A, Wu X, Alodhayb AN, Zahid M, Raziq F, Yi J, Qiao L. Transition metal sulfides: from design strategies to environmental and energy-related applications. Coord Chem Rev, 2025, 523 216237

[162]

Kumar R, Sahoo S, Joanni E, Singh RK, Maegawa K, Tan WK, Kawamura G, Kar KK, Matsuda A. Heteroatom doped graphene engineering for energy storage and conversion. Mater Today, 2020, 39 47

[163]

Wu X, Chen A, Yu X, Tian Z, Li H, Jiang Y, Xu J. Microfluidic synthesis of multifunctional micro-/nanomaterials from process intensification: structural engineering to high electrochemical energy storage. ACS Nano, 2024, 18 20957

[164]

Cheng B, Wu P. Scalable fabrication of kevlar/Ti3C2TX MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano, 2021, 15 8676

[165]

Liu L-X, Chen W, Zhang H-B, Ye L, Wang Z, Zhang Y, Min P, Yu Z-Z. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett, 2022, 14 111

[166]

Wang Z, Chen Y, Yao M, Dong J, Zhang Q, Zhang L, Zhao X. Facile fabrication of flexible RGO/MXene hybrid fiber-like electrode with high volumetric capacitance. J Power Sources, 2020, 448 227398

[167]

Wu G, Sun S, Zhu X, Ma Z, Zhang Y, Bao N. Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2TX core–sheath fibers for high-performance asymmetric supercapacitors. Angew Chem Int Ed, 2022, 61 e202115559

[168]

Tan Z, Mahmood F, Tian M, Li Y, Zhang Q, Ma Z, Wang M, Liu W, Zhang S, Yang H, Li B. Review of flash joule heating for the synthesis of graphene and other functional carbon materials. Carbon Energy, 2025, 2 e70119

[169]

Dai H, Chang J, Yang J, Wang H, Zhou J, Sun G. Bio-inspired interfacial engineering of MXene fibers toward synergistic improvement in mechanical strength and electrochemical performance. Adv Funct Mater, 2024, 34 2312654

[170]

Tang Q, Zhang Y, Zhu X, Wang Y, Man Z, Yang C, Xu J, Wu G, Lu W. Hierarchically porous and hetero-structured black phosphorus/Ti3C2TX MXene aerogel fiber for wearable supercapacitors with implantable capability. Adv Funct Mater, 2024, 34 2410005

[171]

Yin G, Wu J, Ye L, Liu L, Yu Y, Min P, Yu Z-Z, Zhang H-B. Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv Funct Mater, 2024

[172]

Wang H, Wang Y, Chang J, Yang J, Dai H, Xia Z, Hui Z, Wang R, Huang W, Sun G. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett, 2023, 23: 5663

[173]

Khumujam DD, Kshetri T, Singh TI, Kim NH, Lee JH. Fibrous asymmetric supercapacitor based on wet spun MXene/PAN fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/cf positrode. Chem Eng J, 2022, 449 137732

[174]

Ovhal MM, Lee HB, Satale VV, Tyagi B, Chowdhury S, Kang J-W. One-meter-long, all-3d-printed supercapacitor fibers based on structurally engineered electrode for wearable energy storage. Adv Energy Mater, 2024, 14 2303053

[175]

Darmiani N, Hashemifar F, Iraji zad A, Esfandiar A. Facile fabrication of highly oriented dense Ti3C2 fibers with enhanced strength and supercapacitance performance by coagulation condition tuning. ACS Appl Energy Mater, 2023, 6: 2276

[176]

Li S, Wang Y, Chu N, Khan Y, Guo T, Xu X, Li X, Liu C, Zhu D, Shi Z, Yu Y, Alsulaiman D, Shamim A, Lubineau G, Zhang X, Alshareef HN. Janus MXene fiber constructed via flake orientation engineering. Adv Mater, 2025

[177]

Yu C, Gong Y, Chen R, Zhang M, Zhou J, An J, Lv F, Guo S, Sun G. A solid-state fibriform supercapacitor boosted by host–guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small, 2018, 14 1801203

[178]

Wang H, Zhao W, Zhang Z, Hou W, Yin L, Dai H, Zhu X, Zhou J, Tang S, Huang W, Sun G. Synergizing electron and ion transports of Ti3C2TX MXene fiber via dot-sheet heterostructure and covalent Ti-C-Ti cross-linking for efficient charge storage and thermal management. Adv Funct Mater, 2024, 34 2408508

[179]

Man Q, An Y, Shen H, Wei C, Zhang X, Wang Z, Xiong S, Feng J. MXenes and their derivatives for advanced solid-state energy storage devices. Adv Funct Mater, 2023, 33 2303668

[180]

Liu Y, Wang D, Zhang C, Zhao Y, Ma P, Dong W, Huang Y, Liu T. Compressible and lightweight MXene/carbon nanofiber aerogel with “layer-strut” bracing microscopic architecture for efficient energy storage. Adv Fiber Mater, 2022, 4 820

[181]

Hui X, Ge X, Zhao R, Li Z, Yin L. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv Funct Mater, 2020, 30 2005190

[182]

Javed MS, Mateen A, Hussain I, Ahmad A, Mubashir M, Khan S, Assiri MA, Eldin SM, Shah SSA, Han W. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Mater, 2022, 53: 827

[183]

Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang H-Y, Tang J, Anasori B, Seh ZW. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano, 2020, 14: 10834

[184]

Sun S, Zhu X, Wu X, Xu M, Hu Y, Bao N, Wu G. Covalent-architected molybdenum disulfide arrays on Ti3C2TX MXene fiber towards robust capacitive energy storage. J Mater Sci Technol, 2023, 139: 23

[185]

Mei X, Yang C, Chen F, Wang Y, Zhang Y, Man Z, Lu W, Xu J, Wu G. Interfacially ordered nicomos nanosheets arrays on hierarchical Ti3C2TX MXene for high-energy-density fiber-shaped supercapacitors with accelerated pseudocapacitive kinetics. Angew Chem Int Ed, 2024, 63 e202409281

[186]

Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater, 2018, 8 1703043

[187]

Qi Y, Xia Y, Li P, Wang Z, Ming X, Wang B, Shen K, Cai G, Li K, Gao Y, Liu Y, Gao C, Xu Z. Plastic-swelling preparation of functional graphene aerogel fiber textiles. Adv Fiber Mater, 2023, 5: 2016

[188]

Feng M, Zhang Y, Zhu X, Chen W, Lu W, Wu G. Interface-anchored covalent organic frameworks@amino-modified Ti3C2TX MXene on nylon 6 film for high-performance deformable supercapacitors. Angew Chem Int Ed, 2023, 62 e202307195

[189]

Qiu H, Qu X, Zhang Y, Chen S, Shen Y. Robust pani@MXene/gqds-based fiber fabric electrodes via microfluidic wet-fusing spinning chemistry. Adv Mater, 2023, 35 2302326

[190]

Zhang W, Miao J, Tian M, Zhang X, Fan T, Qu L. Hierarchically interlocked helical conductive yarn enables ultra-stretchable electronics and smart fabrics. Chem Eng J, 2023, 462 142279

[191]

Soomro RA, Zhang P, Fan B, Wei Y, Xu B. Progression in the oxidation stability of MXenes. Nano-Micro Lett, 2023, 15: 108

[192]

Seyedin S, Yanza ERS, Razal JM. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A, 2017, 5: 24076

[193]

He N, Patil S, Qu J, Liao J, Zhao F, Gao W. Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl Energy Mater, 2020, 3: 2949

[194]

Liu Q, Zhao A, He X, Li Q, Sun J, Lei Z, Liu Z-H. Full-temperature all-solid-state Ti3C2T/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv Funct Mater, 2021, 31 2010944

[195]

Gu J, Li F, Zhu Y, Li D, Liu X, Wu B, Wu H-A, Fan X, Ji X, Chen Y, Liang J. Extremely robust and multifunctional nanocomposite fibers for strain-unperturbed textile electronics. Adv Mater, 2023, 35 2209527

[196]

Xia Z, Dai H, Chang J, Yang J, Wang H, Wang Y, Hui Z, Wang R, Sun G. Rheology engineering for dry-spinning robust n-doped MXene sediment fibers toward efficient charge storage. Small, 2023, 19: 2304687

[197]

Qu GX, Cheng JL, Li XD, Yuan DM, Chen PN, Chen XL, Wang B, Peng HS. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater, 2016, 28: 3646

[198]

Ma WJ, Li WF, Li M, Mao QH, Pan ZH, Hu J, Li X, Zhu MF, Zhang YG. Unzipped carbon nanotube/graphene hybrid fiber with less "dead volume" for ultrahigh volumetric energy density supercapacitors. Adv Funct Mater, 2021, 31 2100195

[199]

Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol, 2014, 9: 555

[200]

Lee YG, Lee J, An GH. Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Adv Funct Mater, 2021, 31 2104256

[201]

Ma Y, Li P, Sedloff I, Zhang X, Zhang H, Liu J. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano, 2015, 9: 1352

[202]

Yu Y, Zhang F, Liu Y, Leng J. Smart polymer fibers: promising advances in microstructures, stimuli-responsive properties and applications. Adv Fiber Mater, 2025, 7 1010

[203]

Zhai H, Liu J, Liu Z, Li Y. Functional graphene fiber materials for advanced wearable applications. Adv Fiber Mater, 2025, 7: 443

[204]

Ye S, Zhang Y, An C, Xiang S, Wu G. Interfacial-aligned and high conductive 1t-MoS2@Ti3C2TX heterostructure nonwoven fabric for robust deformable supercapacitors. Adv Funct Mater, 2024

[205]

Lee SH, Eom W, Shin H, Ambade RB, Bang JH, Kim HW, Han TH. Room-temperature, highly durable Ti3C2TX MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces, 2020, 12: 10434

[206]

Wu N, Yang Y, Wang C, Wu Q, Pan F, Zhang R, Liu J, Zeng Z. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv Mater, 2023, 35 2207969

[207]

Jiao S, Wang Y, Che W, Pan F, Sui Z, Pang X, Zhang Q, Cai W, Wu N, Zeng Z. Perspective of aramid-nanofiber-based electromagnetic interference shielding materials. J Mater Sci Technol, 2026, 253: 179

[208]

Zhou J, Sui Y, Wu N, Han M, Liu J, Liu W, Zeng Z, Liu J. Recent advances in MXene-based aerogels for electromagnetic wave absorption. Small, 2024, 20 2405968

[209]

Deng Y, Chen Y, Liu W, Wu L, Wang Z, Xiao D, Meng D, Jiang X, Liu J, Zeng Z, Wu N. Transparent electromagnetic interference shielding materials using MXene. Carbon Energy, 2024, 6 e593

[210]

Li B, Yang Y, Wu N, Zhao S, Jin H, Wang G, Li X, Liu W, Liu J, Zeng Z. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano, 2022, 16 19293

[211]

Wei M, Wu N, Li B, Liu J, Pan F, Liu J, Zeng Z. From MXene to multimodal-responsive smart, durable electromagnetic interference shielding textiles. Adv Funct Mater, 2025, 35 2424312

Funding

National Natural Science Foundation of China(22522814)

Zhejiang Provincial Natural Science Foundation of China(LDQ24E030001)

Science Foundation of Zhejiang Sci-Tech University(22212011-Y)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/