Advances in Melt-Electrowriting of Fibrous Bioscaffolds: A High-Resolution Manufacturing Strategy for Tissue Regeneration

Jinqiao Jia , Qi Lei , Zhengjiang Liu , Xiumei Zhang , Xiaomin Guan , Zhicheng Bai , Shilei Zhu , Ya Nan Ye , Jinke Chang , Di Huang

Advanced Fiber Materials ›› : 1 -27.

PDF
Advanced Fiber Materials ›› :1 -27. DOI: 10.1007/s42765-025-00658-y
Review
review-article

Advances in Melt-Electrowriting of Fibrous Bioscaffolds: A High-Resolution Manufacturing Strategy for Tissue Regeneration

Author information +
History +
PDF

Abstract

Melt-electrowriting (MEW) is a high-resolution additive manufacturing technique that has demonstrated significant progress in recent years. Owing to its precise control over fiber deposition, MEW is especially suitable for fabricating fine structures that mimic the natural extracellular matrix (ECM), thereby presenting considerable promise for applications in tissue engineering and regeneration. This review systematically examines the fundamental design principles and recent progress in MEW-based strategies for different tissue engineering and regeneration fields. Initially, the components of the MEW system, the underlying printing mechanisms, and the role of key process parameters are introduced, thereby providing a comprehensive framework for the rational design of scaffolds that replicate both the structural and functional characteristics of native ECM. Subsequently, the selection and performance of commonly employed biomaterials are discussed, with an emphasis on the versatility for diverse tissue engineering applications. The integration of MEW with bioactive materials is further highlighted as an effective approach to enhance the biological functionality of printed constructs and extend their therapeutic potential. Finally, current challenges and future perspectives are outlined, aiming to guide ongoing research and facilitate the clinical translation of MEW-based biofabrication technologies.

Graphical abstract

Keywords

Melt-electrowriting / Fibrous scaffolds / Micro/nanoscale architectures / Bioactive materials / Tissue engineering

Cite this article

Download citation ▾
Jinqiao Jia, Qi Lei, Zhengjiang Liu, Xiumei Zhang, Xiaomin Guan, Zhicheng Bai, Shilei Zhu, Ya Nan Ye, Jinke Chang, Di Huang. Advances in Melt-Electrowriting of Fibrous Bioscaffolds: A High-Resolution Manufacturing Strategy for Tissue Regeneration. Advanced Fiber Materials 1-27 DOI:10.1007/s42765-025-00658-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev, 2014, 20: 277

[2]

Lv X, Feng C, Liu Y, Peng X, Chen S, Xiao D, Wang H, Li Z, Xu Y, Lu M. A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics, 2018, 8: 3153

[3]

Walma DAC, Yamada KM. The extracellular matrix in development. Development, 2020, 147: dev175596

[4]

Zheng D-W, Hong S, Zhang Q-L, Dong X, Pan P, Song W-F, Song W, Cheng S-X, Zhang X-Z. Controllable gelation of artificial extracellular matrix for altering mass transport and improving cancer therapies. Nat Commun, 2020, 11: 4907

[5]

Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother, 2021, 138 111425

[6]

Burloiu AM, Ozon EA, Musuc AM, Anastasescu M, Socoteanu RP, Atkinson I, Culita DC, Anuta V, Popescu IA, Lupuliasa D, Mihai DP, Gîrd CE, Boscencu R. Porphyrin photosensitizers into polysaccharide-based biopolymer hydrogels for topical photodynamic therapy: physicochemical and pharmacotechnical assessments. Gels, 2024, 10: 499

[7]

Bl O, Panneer Selvam S, Ramadoss R, Sundar S, Ramani P, P B. Fabrication of periodontal membrane from nelumbo nucifera: a novel approach for dental applications. Cureus J Med Science, 2024, 16e59848

[8]

Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. Curr Opin Biomed Eng, 2023, 26 100454

[9]

He J, Zhang B, Li Z, Mao M, Li J, Han K, Li D. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication, 2020, 12 042002

[10]

Zhang Y-Q, Wang P, Shi Q-F, Ning X, Chen Z, Ramakrishna S, Zheng J, Long Y-Z. Advances in wet electrospinning: rich morphology and promising applications. Adv Fiber Mater, 2024, 7: 374

[11]

Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent advances in electrospinning techniques for precise medicine. Cyborg Bionic Syst, 2024, 5: 0101

[12]

Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1: 20210089

[13]

Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone, 2016, 83: 197

[14]

Ji Y, Yang Q, Huang G, Shen M, Jian Z, Thoraval M-J, Lian Q, Zhang X, Xu F. Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater Sci Eng, 2019, 5: 4112

[15]

Nazir A, Ali M, Jeng J-Y. Investigation of compression and buckling properties of a novel surface-based lattice structure manufactured using multi jet fusion technology. Materials, 2021, 14: 2599

[16]

Pennacchio FA, Caliendo F, Iaccarino G, Langella A, Siciliano V, Santoro F. Three-dimensionally patterned scaffolds modulate the biointerface at the nanoscale. Nano Lett, 2019, 19: 5118

[17]

Teixeira BN, Aprile P, Mendonca RH, Kelly DJ, Thire R. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater, 2019, 107: 37

[18]

Saiz PG, Reizabal A, Vilas‐Vilela JL, Dalton PD, Lanceros‐Mendez S. Materials and strategies to enhance melt electrowriting potential. Adv Mater, 2024, 36 2312084

[19]

Yang R, Xu Y, Li R, Zhang Y, Xu Y, Yang L, Cui W, Wang L. Synergistic biofilter tube for promoting scarless tendon regeneration. Nano Lett, 2024, 24: 7381

[20]

Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration, 2022, 2: 20210029

[21]

Loewner S, Heene S, Baroth T, Heymann H, Cholewa F, Blume H, Blume C. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front Bioeng Biotechnol, 2022, 10 896719

[22]

Zhou X, Fang Y, Zhang T, Xiong Z. Retrospective: advances and opportunities of 3D bioprinting in China over three decades. Addit Manuf Front, 2024, 3 200157

[23]

Salem M, Khadivi F, Javanbakht P, Mojaverrostami S, Abbasi M, Feizollahi N, Abbasi Y, Heidarian E, Rezaei YF. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther, 2023, 14: 262

[24]

Luo G, Teh KS, Liu Y, Zang X, Wen Z, Lin L. Direct-write, self-aligned electrospinning on paper for controllable fabrication of three-dimensional structures. ACS Appl Mater Interfaces, 2015, 7: 27765

[25]

Wu Y. Electrohydrodynamic jet 3D printing in biomedical applications. Acta Biomater, 2021, 128 21

[26]

Liu Z, Jia J, Lei Q, Wei Y, Hu Y, Lian X, Zhao L, Xie X, Bai H, He X, Si L, Livermore C, Kuang R, Zhang Y, Wang J, Yu Z, Ma X, Huang D. Electrohydrodynamic direct‐writing micro/nanofibrous architectures: principle, materials, and biomedical applications. Adv Healthc Mater, 2024, 13 2400930

[27]

Hrynevich A, Elçi , Haigh JN, McMaster R, Youssef A, Blum C, Blunk T, Hochleitner G, Groll J, Dalton PD. Dimension-based design of melt electrowritten scaffolds. Small, 2018, 14: 1800232

[28]

Eichholz KF, Gonçalves I, Barceló X, Federici AS, Hoey DA, Kelly DJ. How to design, develop and build a fully-integrated melt electrowriting 3D printer. Addit Manuf, 2022, 58102998

[29]

Kade JC, Dalton PD. Polymers for melt electrowriting. Adv Healthc Mater, 2020, 10 2001232

[30]

Mieszczanek P, Robinson TM, Dalton PD, Hutmacher DW. Convergence of machine vision and melt electrowriting. Adv Mater, 2021, 33 2100519

[31]

Ding H, Cao K, Zhang F, Boettcher W, Chang RC. A fundamental study of charge effects on melt electrowritten polymer fibers. Mater Des, 2019, 178 107857

[32]

Montero-Calle P, Flandes-Iparraguirre M, Mountris K, de la S Nava A, Laita N, Rosales RM, Iglesias-García O, de-Juan-Pardo EM, Atienza F, Fernández-Santos ME, Peña E, Doblaré M, Gavira JJ, Fernández-Avilés F, Prósper F, Pueyo E, Mazo MM. Fabrication of human myocardium using multidimensional modelling of engineered tissues. Biofabrication, 2022, 14 045017

[33]

Tourlomousis F, Ding H, Kalyon DM, Chang RC. Melt electrospinning writing process guided by a “printability number”. J Manuf Sci Eng, 2017, 139 081004

[34]

McColl E, Groll J, Jungst T, Dalton PD. Design and fabrication of melt electrowritten tubes using intuitive software. Mater Des, 2018, 155 46

[35]

Dayan CB, Afghah F, Okan BS, Yıldız M, Menceloglu Y, Culha M, Koc B. Modeling 3D melt electrospinning writing by response surface methodology. Mater Des, 2018, 148 87

[36]

Du L, Nie L, Zhang L, Lu H, Yang L, Xu H, Hou J. Enhancing the printing accuracy of melt electrowritten fibers deposited on aluminum foils. Mater Lett, 2022, 321 132397

[37]

Lu H, Sun Y, Chen Y, Nie L, Yang L, Du L, Xu H. The effects of voltage configurations on print accuracy in melt electrowriting. Mater Lett, 2023, 334 133738

[38]

Hochleitner G, Jüngst T, Brown TD, Hahn K, Moseke C, Jakob F, Dalton PD, Groll J. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication, 2015, 7 035002

[39]

Wunner FM, Wille ML, Noonan TG, Bas O, Dalton PD, De‐Juan‐Pardo EM, Hutmacher DW. Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv Mater, 2018, 30 1706570

[40]

King W, Bowlin G. Near-field electrospinning and melt electrowriting of biomedical polymers—progress and limitations. Polymers, 2021, 13 1097

[41]

Wang Y, Su Y, Zhang Y, Chen M. High-voltage wave induced a unique structured percolation network with a negative gauge factor. ACS Appl Mater Interfaces, 2022, 14: 5661

[42]

Hochleitner G, Chen F, Blum C, Dalton PD, Amsden B, Groll J. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons. Acta Biomater, 2018, 72 110

[43]

Lei Q, Jia J, Guan X, Han K, Liu J, Duan R, Lian X, Huang D. Electrohydrodynamic printing of microscale fibrous scaffolds with a sinusoidal structure for enhancing the contractility of cardiomyocytes. ACS Biomater Sci Eng, 2024, 10: 7227

[44]

Han K, Mao M, Fu L, Zhang Y, Kang Y, Li D, He J. Multimaterial printing of serpentine microarchitectures with synergistic mechanical/piezoelectric stimulation for enhanced cardiac-specific functional regeneration. Small, 2024, 20: 2401561

[45]

Peiffer QC, de Ruijter M, van Duijn J, Crottet D, Dominic E, Malda J, Castilho M. Melt electrowriting onto anatomically relevant biodegradable substrates: resurfacing a diarthrodial joint. Mater Des, 2020, 195 109025

[46]

Weekes A, Wehr G, Pinto N, Jenkins J, Li Z, Meinert C, Klein TJ. Highly compliant biomimetic scaffolds for small diameter tissue-engineered vascular grafts (TEVGs) produced via melt electrowriting (MEW). Biofabrication, 2023, 16 015017

[47]

Saidy NT, Fernández‐Colino A, Heidari BS, Kent R, Vernon M, Bas O, Mulderrig S, Lubig A, Rodríguez‐Cabello JC, Doyle B, Hutmacher DW, De‐Juan‐Pardo EM, Mela P. Spatially heterogeneous tubular scaffolds for In situ heart valve tissue engineering using melt electrowriting. Adv Funct Mater, 2022, 32 2110716

[48]

McCosker AB, Snowdon ME, Lamont R, Woodruff MA, Paxton NC. Exploiting nonlinear fiber patterning to control tubular scaffold mechanical behavior. Adv Mater Technol, 2022, 7 2200259

[49]

Cao K, Zhang F, Zaeri A, Zgeib R, Chang RC. A holistic model for melt electrowritten threedimensional structured materials based on residual charge. Int J Bioprint, 2022, 9 656

[50]

Zhang F, Cao K, Zaeri A, Zgeib R, Chang RC. Effects of printing sequence on the printing accuracy of melt electrowriting scaffolds. Macromol Mater Eng, 2022

[51]

Zhang F, Cao K, Zaeri A, Zgeib R, Chang RC. Effects of scaffold design parameters on the printing accuracy for melt electrowriting. J Manuf Process, 2022, 81: 177

[52]

Yao C, Qiu Z, Li X, Zhu H, Li D, He J. Electrohydrodynamic printing of microfibrous architectures with cell-scale spacing for improved cellular migration and neurite outgrowth. Small, 2023, 19: 2207331

[53]

Liashenko I, Hrynevich A, Dalton PD. Designing outside the box: unlocking the geometric freedom of melt electrowriting using microscale layer shifting. Adv Mater, 2020, 32 2001874

[54]

Xu H, Liashenko I, Lucchetti A, Du L, Dong Y, Zhao D, Meng J, Yamane H, Dalton PD. Designing with circular arc toolpaths to increase the complexity of melt electrowriting. Adv Mater Technol, 2022, 7 2101676

[55]

Javadzadeh M, del Barrio J, Sánchez‐Somolinos C. Melt electrowriting of liquid crystal elastomer scaffolds with programmed mechanical response. Adv Mater, 2023, 35 2209244

[56]

Devlin BL, Allenby MC, Ren J, Pickering E, Klein TJ, Paxton NC, Woodruff MA. Materials design innovations in optimizing cellular behavior on melt electrowritten (MEW) scaffolds. Adv Funct Mater, 2024, 34 2313092

[57]

Böhm C, Stahlhut P, Weichhold J, Hrynevich A, Teßmar J, Dalton PD. The multiweek thermal stability of medical‐grade poly(ε‐caprolactone) during melt electrowriting. Small, 2021, 18 2104193

[58]

Paxton NC, Ho SWK, Tuten BT, Lipton-Duffin J, Woodruff MA. Degradation of melt electrowritten PCL scaffolds following melt processing and plasma surface treatment. Macromol Rapid Commun, 2021, 42: 2100433

[59]

Kim J, Kim W, Kim G. Scaffold with micro/nanoscale topographical cues fabricated using E-field-assisted 3D printing combined with plasma-etching for enhancing myoblast alignment and differentiation. Appl Surf Sci, 2020, 509 145404

[60]

Olvera D, Sohrabi Molina M, Hendy G, Monaghan MG. Electroconductive melt electrowritten patches matching the mechanical anisotropy of human myocardium. Adv Funct Mater, 2020, 30 1909880

[61]

Qu X, Xia P, He J, Li D. Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite scaffolds for bone tissue engineering. Mater Lett, 2016, 185: 554

[62]

Bai J, Wang H, Gao W, Liang F, Wang Z, Zhou Y, Lan X, Chen X, Cai N, Huang W, Tang Y. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int J Pharm, 2020, 576 118941

[63]

Golafshan N, Castilho M, Daghrery A, Alehosseini M, van de Kemp T, Krikonis K, de Ruijter M, Dal-Fabbro R, Dolatshahi-Pirouz A, Bhaduri SB, Bottino MC, Malda J. Composite graded melt electrowritten scaffolds for regeneration of the periodontal ligament-to-bone interface. ACS Appl Mater Interfaces, 2023, 15 12735

[64]

Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, Li H, Hao Y, Dai K. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials, 2021, 266 120385

[65]

Zhang G, Li W, Yu M, Huang H, Wang Y, Han Z, Shi K, Ma L, Yu Z, Zhu X, Peng Z, Xu Y, Li X, Hu S, He J, Li D, Xi Y, Lan H, Xu L, Tang M, Xiao M. Electric‐field‐driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues. Adv Sci, 2023, 10 2206264

[66]

Meng J, Boschetto F, Yagi S, Marin E, Adachi T, Chen X, Pezzotti G, Sakurai S, Yamane H, Xu H. Melt-electrowritten poly(L-lactic acid)- and bioglass-reinforced biomimetic hydrogel for bone regeneration. Mater Des, 2022, 219 110781

[67]

Fortelny I, Ujcic A, Fambri L, Slouf M. Phase structure, compatibility, and toughness of PLA/PCL blends: a review. Front Mater, 2019, 6 481142

[68]

Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, Wang L, Wang K, Zhou C, Liu L, Fan Y, Zhang X. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B-Eng, 2021, 224 109192

[69]

Zhang Y, Le Friec A, Sun D, Chen M. Sinusoidal stretchable fibrous electrodes regulate cardiac contraction. Chem Eng J, 2023, 455 140555

[70]

Castilho M, van Mil A, Maher M, Metz CHG, Hochleitner G, Groll J, Doevendans PA, Ito K, Sluijter JPG, Malda J. Melt electrowriting allows tailored microstructural and mechanical design of scaffolds to advance functional human myocardial tissue formation. Adv Funct Mater, 2018, 28 1803151

[71]

Eichholz KF, Freeman FE, Pitacco P, Nulty J, Ahern D, Burdis R, Browe DC, Garcia O, Hoey DA, Kelly DJ. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication, 2022, 14 045013

[72]

Lei Q, He J, Li D. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. Nanoscale, 2019, 11: 15195

[73]

Abbasi N, Abdal-hay A, Hamlet S, Graham E, Ivanovski S. Effects of gradient and offset architectures on the mechanical and biological properties of 3-D melt electrowritten (MEW) scaffolds. ACS Biomater Sci Eng, 2019, 5: 3448

[74]

Ainsworth MJ, Lotz O, Gilmour A, Zhang A, Chen MJ, McKenzie DR, Bilek MMM, Malda J, Akhavan B, Castilho M. Covalent protein immobilization on 3D‐printed microfiber meshes for guided cartilage regeneration. Adv Funct Mater, 2022, 33 2206583

[75]

Brennan CM, Eichholz KF, Hoey DA. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Biomed Mater, 2019, 14 065016

[76]

Dufour A, Gallostra X B XB, O'Keeffe C, Eichholz K, Von Euw S, Garcia O, Kelly DJ. Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials, 2022, 283 121405

[77]

Hall GN, Chandrakar A, Pastore A, Ioannidis K, Moisley K, Cirstea M, Geris L, Moroni L, Luyten FP, Wieringa P, Papantoniou I. Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids. Acta Biomater, 2023, 165: 111

[78]

Han Y, Lian M, Sun B, Jia B, Wu Q, Qiao Z, Dai K. Preparation of high precision multilayer scaffolds based on melt electro-writing to repair cartilage injury. Theranostics, 2020, 10: 10214

[79]

Galarraga JH, Locke RC, Witherel CE, Stoeckl BD, Castilho M, Mauck RL, Malda J, Levato R, Burdick JA. Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair. Biofabrication, 2021, 14 014106

[80]

Staples R, Ivanovski S, Vaquette C. Fibre-guiding biphasic scaffold for perpendicular periodontal ligament attachment. Acta Biomater, 2022, 150: 221

[81]

Mueller KMA, Unterrainer A, Rojas‐González DM, De‐Juan‐Pardo E, Willner MS, Herzen J, Mela P. Introducing controlled microporosity in melt electrowriting. Adv Mater Technol, 2023, 8 2201158

[82]

Gwiazda M, Kumar S, Świeszkowski W, Ivanovski S, Vaquette C. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in anterior cruciate ligament tissue engineering. J Mech Behav Biomed Mater, 2020, 104 103631

[83]

Daghrery A, Ferreira JA, Xu J, Golafshan N, Kaigler D, Bhaduri SB, Malda J, Castilho M, Bottino MC. Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues. Bioact Mater, 2023, 19: 268

[84]

Farag A, Abdal-hay A, Han P, Ivanovski S. Fabrication of 3D melt electrowritting multiphasic scaffold with bioactive and osteoconductivite functionalities for periodontal regeneration. Ceram Int, 2023, 49: 8015

[85]

Daghrery A, Ferreira JA, de Souza Araújo IJ, Clarkson BH, Eckert GJ, Bhaduri SB, Malda J, Bottino MC. A highly ordered, nanostructured fluorinated CaP‐coated melt electrowritten scaffold for periodontal tissue regeneration. Adv Healthc Mater, 2021, 10 2101152

[86]

Wang Y, Zhang Y, Zhang Z, Su Y, Wang Z, Dong M, Chen M. An injectable high-conductive bimaterial scaffold for neural stimulation. Colloids Surf B Biointerfaces, 2020, 195 111210

[87]

Janzen D, Bakirci E, Wieland A, Martin C, Dalton PD, Villmann C. Cortical neurons form a functional neuronal network in a 3D printed reinforced matrix. Adv Healthc Mater, 2020, 9 1901630

[88]

Schaefer N, Janzen D, Bakirci E, Hrynevich A, Dalton PD, Villmann C. 3D electrophysiological measurements on cells embedded within fiber‐reinforced matrigel. Adv Healthc Mater, 2019, 8 1801226

[89]

Iglesias‐García O, Flandes‐Iparraguirre M, Montero‐Calle P, Rosales RM, Ullate‐Agote A, Sánchez‐Bueno A, Larequi E, Anaut‐Lusar I, Laita N, Oliván‐Viguera A, Iglesias E, Abizanda G, San Martín‐Úriz P, Aguirre‐Ruiz P, Aranguren XL, de García Yébenes M, Gavira JJ, Martínez , Peña E, Doblaré M, de‐Juan‐Pardo EM, Pueyo E, Prosper F, Mazo Vega MM. Biologically‐inspired melt electrowriting for the generation of highly biomimetic functional myocardium. Adv Funct Mater, 2025, 35 2420106

[90]

Qiu Z, Meng Z, Kasimu A, Wang Z, He P, Wang L, Zhao R, Mao M, Tian Y, Kong L, Li D, He J. Consecutive hybrid bioprinting of microfiber-reinforced living muscle constructs with highly-aligned cellular organizations. Adv Mater, 2025

[91]

Castilho M, Feyen D, Flandes‐Iparraguirre M, Hochleitner G, Groll J, Doevendans PAF, Vermonden T, Ito K, Sluijter JPG, Malda J. Melt electrospinning writing of poly‐hydroxymethylglycolide‐co‐ε‐caprolactone‐based scaffolds for cardiac tissue engineering. Adv Healthc Mater, 2017, 6 1700311

[92]

Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: trends in myocardial infarction. Adv Drug Deliv Rev, 2021, 173: 181

[93]

Karppinen S-M, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res, 2019, 8 787

[94]

Wu K, Wang Y, Liu R, Wang H, Rui T. The role of mammalian sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol, 2023, 14 1207133

[95]

Holfeld J, Nägele F, Pölzl L, Engler C, Graber M, Hirsch J, Schmidt S, Mayr A, Troger F, Pamminger M, Theurl M, Schreinlechner M, Sappler N, Ruttmann-Ulmer E, Schaden W, Cooke JP, Ulmer H, Bauer A, Gollmann-Tepeköylü C, Grimm M. Cardiac shockwave therapy in addition to coronary bypass surgery improves myocardial function in ischaemic heart failure: the CAST-HF trial. Eur Heart J, 2024, 45: 2634

[96]

Amezcua R, Shirolkar A, Fraze C, Stout D. Nanomaterials for cardiac myocyte tissue engineering. Nanomaterials, 2016, 6: 133

[97]

Deshmukh RS, Kovács KA, Dinnyés A. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int, 2012, 2012 379569

[98]

Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev, 2018, 129: 148

[99]

Hosoyama K, Ahumada M, McTiernan CD, Davis DR, Variola F, Ruel M, Liang W, Suuronen EJ, Alarcon EI. Nanoengineered electroconductive collagen-based cardiac patch for infarcted myocardium repair. ACS Appl Mater Interfaces, 2018, 10: 44668

[100]

You J-O, Rafat M, Ye GJC, Auguste DT. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett, 2011, 11: 3643

[101]

Chen Q-Z, Harding SE, Ali NN, Lyon AR, Boccaccini AR. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep, 2008, 59 1

[102]

Ramadan S, Paul N, Naguib HE. Standardized static and dynamic evaluation of myocardial tissue properties. Biomed Mater, 2017, 12 025013

[103]

Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, Humphrey EJ, Puetzer JL, Mawad D, Koutsogeorgis DC, Stuckey DJ, Terracciano CM, Harding SE, Stevens MM. Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater, 2018, 28 1800618

[104]

Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: a review. Acta Biomater, 2022, 139: 157

[105]

Yong KW, Choi JR, Choi JY, Cowie AC. Recent advances in mechanically loaded human mesenchymal stem cells for bone tissue engineering. Int J Mol Sci, 2020, 21: 5816

[106]

Lee S-H, Kim C-H, Yoon J-Y, Choi E-J, Kim MK, Yoon J-U, Kim HY, Kim E-J. Lidocaine intensifies the anti-osteogenic effect on inflammation-induced human dental pulp stem cells via mitogen-activated protein kinase inhibition. J Dent Sci, 2023, 18: 1062

[107]

Zhan J, Chen Z, Liu J, Pang Q, Lei M, Liu J, Song Y, Huang W, Dong L. A targeting trained immunity nanofiber scaffold for large bone defect repair. Adv Fiber Mater, 2025, 7: 1423

[108]

Wang M, Li B, Liu Y, Tang L, Zhang Y, Xie Q. A novel bionic extracellular matrix polymer scaffold enhanced by calcium silicate for bone tissue engineering. ACS Omega, 2021, 6: 35727

[109]

Xiao L, Liu H, Wu S, Huang H, Xie Y, Wei R, Lei J, Lei Y, Xue L, Yan F, Geng Z, Cai L. Fishnet-inspired 3D scaffold fabricated from mesh-like electrospun membranes promoted osteoporotic bone regeneration. Adv Fiber Mater, 2024, 7: 72

[110]

Scocozza F, Di Gravina GM, Bari E, Auricchio F, Torre ML, Conti M. Prediction of the mechanical response of a 3D (bio)printed hybrid scaffold for improving bone tissue regeneration by structural finite element analysis. J Mech Behav Biomed Mater, 2023, 142 105822

[111]

De Witte TM, Wagner AM, Fratila‐Apachitei LE, Zadpoor AA, Peppas NA. Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications. J Biomed Mater Res, 2020, 108: 1122

[112]

Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers, 2016, 8 42

[113]

Park D, Lee SJ, Choi DK, Park J-W. Therapeutic agent-loaded fibrous scaffolds for biomedical applications. Pharmaceutics, 2023, 15: 1522

[114]

Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res, 2022, 40: 69

[115]

Bohner M, Miron RJ. A proposed mechanism for material-induced heterotopic ossification. Mater Today, 2019, 22: 132

[116]

Freeman FE, Pitacco P, Dommelen LHAv, Nulty J, Browe DC, Shin J-Y, Alsberg E, Kelly DJ. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci Adv, 2020, 6 eabb5093

[117]

Berner A, Woodruff MA, Lam CXF, Arafat MT, Saifzadeh S, Steck R, Ren J, Nerlich M, Ekaputra AK, Gibson I, Hutmacher DW. Effects of scaffold architecture on cranial bone healing. Int J Oral Maxillofac Surg, 2014, 43: 506

[118]

Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials, 2019, 12 568

[119]

Yilgor P, Yilmaz G, Onal MB, Solmaz I, Gundogdu S, Keskil S, Sousa RA, Reis RL, Hasirci N, Hasirci V. Anin vivostudy on the effect of scaffold geometry and growth factor release on the healing of bone defects. J Tissue Eng Regen Med, 2013, 7: 687

[120]

O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26: 433

[121]

Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater, 2018, 5: 115

[122]

Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr, 2014, 4: 377

[123]

Meng J, Boschetto F, Yagi S, Marin E, Adachi T, Chen X, Pezzotti G, Sakurai S, Sasaki S, Aoki T, Yamane H, Xu H. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient, green, and effective hydrophilic surface modification. Biomater Adv, 2022, 135 112686

[124]

Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 2018, 360 eaao2189

[125]

Zeng M, Xu Z, Song Z-Q, Li J-X, Tang Z-W, Xiao S, Wen J. Diagnosis and treatment of chronic osteomyelitis based on nanomaterials. World J Orthop, 2023, 14: 42

[126]

Eichholz KF, Von Euw S, Burdis R, Kelly DJ, Hoey DA. Development of a new bone‐mimetic surface treatment platform: nanoneedle hydroxyapatite (nnHA) coating. Adv Healthc Mater, 2020, 9 2001102

[127]

Li Y, Ma J, Wang J, Kong Y, Wang F, Zhang P, Yawei F. Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold. Biomed Mater, 2024, 20 015032

[128]

Afghah F, Iyison NB, Nadernezhad A, Midi A, Sen O, Saner Okan B, Culha M, Koc B. 3D fiber reinforced hydrogel scaffolds by melt electrowriting and gel casting as a hybrid design for wound healing. Adv Healthc Mater, 2022, 11 2102068

[129]

Fang X-Z, Zhou T, Xu J-Q, Wang Y-X, Sun M-M, He Y-J, Pan S-W, Xiong W, Peng Z-K, Gao X-H, Shang Y. Structure, kinetic properties and biological function of mechanosensitive piezo channels. Cell Biosci, 2021, 11: 13

[130]

Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol, 2013, 305: C1202

[131]

Nordberg RC, Bielajew BJ, Takahashi T, Dai S, Hu JC, Athanasiou KA. Recent advancements in cartilage tissue engineering innovation and translation. Nat Rev Rheumatol, 2024, 20: 323

[132]

Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Gallego I, Gálvez-Martín P, Saenz-del-Burgo L, Pedraz JL. Progress in 3D bioprinting technology for osteochondral regeneration. Pharmaceutics, 2022, 14: 1578

[133]

Steele JAM, Moore AC, St-Pierre J-P, McCullen SD, Gormley AJ, Horgan CC, Black CRM, Meinert C, Klein T, Saifzadeh S, Steck R, Ren J, Woodruff MA, Stevens MM. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials, 2022, 286 121548

[134]

Guo T, Lembong J, Zhang LG, Fisher JP. Three-dimensional printing articular cartilage: recapitulating the complexity of native tissue. Tissue Eng Part B-Re, 2017, 23: 225

[135]

Kang Y, Guan Y, Li S. Innovative hydrogel solutions for articular cartilage regeneration: a comprehensive review. Int J Surg, 2024, 110: 7984

[136]

Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and application of silk fibroin based biomaterials to promote cartilage regeneration in osteoarthritis therapy. Biomedicines, 2023, 11: 2244

[137]

Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol, 2014, 11: 21

[138]

de Ruijter M, Hrynevich A, Haigh JN, Hochleitner G, Castilho M, Groll J, Malda J, Dalton PD. Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites. Small, 2017, 14: 1702773

[139]

Ghosh Dastidar A, Clarke SA, Larrañeta E, Buchanan F, Manda K. In vitro degradation of 3D-printed poly(l-lactide-co-glycolic acid) scaffolds for tissue engineering applications. Polymers, 2023, 15: 3714

[140]

Lu Y, Cui Z, Cheng L, Li J, Yang Z, Zhu H, Wu C. Quantifying the discrepancies in the geometric and mechanical properties of the theoretically designed and additively manufactured scaffolds. J Mech Behav Biomed, 2020, 112 104080

[141]

Castilho M, Mouser V, Chen M, Malda J, Ito K. Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration. Acta Biomater, 2019, 95: 297

[142]

Han Y, Jia B, Lian M, Sun B, Wu Q, Sun B, Qiao Z, Dai K. High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioact Mater, 2021, 6: 2173

[143]

Montoya Y, Cardenas J, Bustamante J, Valencia R. Effect of sequential electrospinning and co-electrospinning on morphological and fluid mechanical wall properties of polycaprolactone and bovine gelatin scaffolds, for potential use in small diameter vascular grafts. Biomater Res, 2021, 25: 38

[144]

Zhang F, Cao K, Zaeri A, Zgeib R, Buckley C, Ma Y, Chang RC. Design, fabrication, and characterization of tubular scaffolds by way of a melt electrowriting process. Addit Manuf, 2023, 62103383

[145]

Geelhoed WJ, Lalai RA, Sinnige JH, Jongeleen PJ, Storm C, Rotmans JI. Indirect burst pressure measurements for the mechanical assessment of biological vessels. Tissue Eng Part C Methods, 2019, 25 472

[146]

L'Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NAF, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med, 2006, 12: 361

[147]

Kumar VA, Brewster LP, Caves JM, Chaikof EL. Tissue engineering of blood vessels: functional requirements, progress, and future challenges. Cardiovasc Eng Technol, 2011, 2: 137

[148]

Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z, Wang Z, Ning C, Li Q, Zhao H. Hierarchy reproduction: multiphasic strategies for tendon/ligament-bone junction repair. Biomater Res, 2025, 29: 0132

[149]

Wu Y, Wu B, Vijayavenkataraman S, Wong YS, Fuh JYH. Crimped fiber with controllable patterns fabricated via electrohydrodynamic jet printing. Mater Des, 2017, 131 384

[150]

Yao K, Lv S, Zhang X, Shen K, Chen Y, Ma Z, He Y. 3D printing of multiscale biomimetic scaffold for tendon regeneration. Adv Funct Mater, 2024, 35 2413970

[151]

Astuti SD, Utomo IB, Setiawatie EM, Khasanah M, Purnobasuki H, Arifianto D, Alamsyah KA. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis. BMC Oral Health, 2021, 21: 80

[152]

Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis, 2022, 60 e23499

[153]

Almeida ND, Carneiro CA, de Marco AC, Porto VC, França R. 3D bioprinting techniques and bioinks for periodontal tissues regeneration—a literature review. Biomimetics, 2024, 9: 480

[154]

Lian M, Han Y, Sun B, Xu L, Wang X, Ni B, Jiang W, Qiao Z, Dai K, Zhang X. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater, 2020, 118 83

[155]

Daghrery A, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Unveiling the potential of melt electrowriting in regenerative dental medicine. Acta Biomater, 2023, 156 88

[156]

Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: scaffold design, chemical principles and microenvironmental remodeling. Mater Today, 2021, 51: 165

[157]

Zhang X, Qu W, Li D, Shi K, Li R, Han Y, Jin E, Ding J, Chen X. Functional polymer‐based nerve guide conduits to promote peripheral nerve regeneration. Adv Mater Interfaces, 2020, 7 2000225

[158]

Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Adv Sci, 2022, 9 2103875

[159]

Gao X, Zhang Y, Wu Y, Nguyen TT, Wu J, Guo M, Du C. Inspired by skeletal muscles: study of the physical and electrochemical properties of derived lignocellulose-based carbon fibers. Materials, 2022, 15 8068

[160]

Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater, 2020, 106: 54

[161]

Dong X, Liu S, Yang Y, Gao S, Li W, Cao J, Wan Y, Huang Z, Fan G, Chen Q, Wang H, Zhu M, Kong D. Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials, 2021, 272 120767

[162]

Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol, 2019, 319 112963

[163]

Leahy LM, Woods I, Gutierrez-Gonzalez J, Maughan J, O’Connor C, Stasiewicz M, Kaur K, Monaghan MG, Dervan A, O’Brien FJ. Electrostimulation via a 3D-printed, biomimetic, neurotrophic, electroconductive scaffold for the promotion of axonal regrowth after spinal cord injury. Mater Today, 2024, 79: 60

[164]

Lou L, Rubfiaro AS, Deng V, He J, Thomas T, Roy M, Dickerson D, Agarwal A. Harnessing 3D printing and electrospinning for multiscale hybrid patches mimicking the native myocardium. ACS Appl Mater Interfaces, 2024, 16: 37596

[165]

Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact Mater, 2021, 6: 4110

[166]

Yang C, Ji J, Lv Y, Li Z, Luo D. Application of piezoelectric material and devices in bone regeneration. Nanomaterials, 2022, 12: 4386

[167]

Zhang P, Qi J, Zhang R, Zhao Y, Yan J, Gong Y, Liu X, Zhang B, Wu X, Wu X, Zhang C, Zhao B, Li B. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomater Sci, 2024, 12 308

[168]

Ye T, Yan J, Kan T, Xie G, Zhang Z, Yin W, Zhao B, Yu Z, Chu L. Articular cartilage degeneration and aberrant osteocyte perilacunar/canalicular remodeling in subchondral bone of patients with developmental dysplasia of the hip. BMC Musculoskelet Dis, 2025, 26: 165

[169]

Goins A, Webb AR, Allen JB. Multi-layer approaches to scaffold-based small diameter vessel engineering: a review. Mat Sci Eng C-Mater, 2019, 97: 896

[170]

Xie X, Cai J, Li D, Chen Y, Wang C, Hou G, Steinberg T, Rolauffs B, El-Newehy M, El-Hamshary H, Jiang J, Mo X, Zhao J, Wu J. Multiphasic bone-ligament-bone integrated scaffold enhances ligamentization and graft-bone integration after anterior cruciate ligament reconstruction. Bioact Mater, 2024, 31: 178

[171]

Xie Z, Zhang P, Zhang Z, Chen C, Wang X. The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chin Chem Lett, 2024, 35 109768

[172]

Aghazadeh MR, Delfanian S, Aghakhani P, Homaeigohar S, Alipour A, Shahsavarani H. Recent advances in development of natural cellulosic non-woven scaffolds for tissue engineering. Polymers, 2022, 14 1531

Funding

National Natural Science Foundation of China(12402377)

Fundamental Research Program of Shanxi Province(202403021223002)

University College London(574696)

RIGHTS & PERMISSIONS

The Author(s)

PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

/