Fabrication of Graphene-Skinned SiC Fiber Materials Toward Dielectric-Gradient Ceramic Matrix Composites for Efficient Electromagnetic Absorption

Wenhu Wang , Shun Chen , Majuan Zhao , Yueming Hu , Xiaomeng Wang , Junjie Xu , Wenyue Yang , Xiping Ma , Jiang Guo , Shaoqian Chen , Qiqing Xi , Yuzhu Wu , Zhifeng Sun , Yuanlong Shao , Xiaopan Qiu , Siwei Li , Lin Lan , Xiaoli Sun , Diantang Zhang , Yuqing Song , Zhongfan Liu

Advanced Fiber Materials ›› : 1 -18.

PDF
Advanced Fiber Materials ›› :1 -18. DOI: 10.1007/s42765-025-00657-z
Research Article
research-article

Fabrication of Graphene-Skinned SiC Fiber Materials Toward Dielectric-Gradient Ceramic Matrix Composites for Efficient Electromagnetic Absorption

Author information +
History +
PDF

Abstract

Overcoming the trilemma of strength, absorption, and cost in stealth composites, we report the dielectric-gradient silicon carbide fiber-reinforced silicon carbide matrix composites with graphene-skinned SiC fibers (Gr-SiCf) enabling tunable electromagnetic architecture. By conformally depositing continuous graphene skins onto SiCf via atmospheric pressure chemical vapor deposition, we achieve precise control over conductivity through growth kinetics at minimal cost, while maintaining the high mechanical strength of the resulting Gr-SiCf. Strategic integration of these Gr-SiCf as high-, medium-, and low-volume-resistivity reinforcements creates spatially tailored dielectric gradients, optimized through finite-element modeling. The resulting dielectric-gradient structures exhibit exceptional impedance matching, alongside synergistic polarization loss, conductive loss, and multiple reflections. At a total thickness of 3.5 mm, the composite achieves an effective absorption bandwidth (EAB, reflection loss ≤ −10 dB) of 4.30 GHz and a broad bandwidth (RL ≤ −5 dB) of 13.41 GHz across the 4–18 GHz range. This material paradigm establishes a scalable route to manufacturing complex-shaped structural absorbers, addressing a critical bottleneck for next-generation stealth platforms.

Graphical Abstract

Keywords

Chemical vapor deposition / Graphene-skinned SiC fiber / Graphene-skinned SiC fiber-reinforced SiC matrix composites / Dielectric-gradient / Electromagnetic absorption

Cite this article

Download citation ▾
Wenhu Wang, Shun Chen, Majuan Zhao, Yueming Hu, Xiaomeng Wang, Junjie Xu, Wenyue Yang, Xiping Ma, Jiang Guo, Shaoqian Chen, Qiqing Xi, Yuzhu Wu, Zhifeng Sun, Yuanlong Shao, Xiaopan Qiu, Siwei Li, Lin Lan, Xiaoli Sun, Diantang Zhang, Yuqing Song, Zhongfan Liu. Fabrication of Graphene-Skinned SiC Fiber Materials Toward Dielectric-Gradient Ceramic Matrix Composites for Efficient Electromagnetic Absorption. Advanced Fiber Materials 1-18 DOI:10.1007/s42765-025-00657-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yajima S, Hayashi J, Omori M, Okamura K. Development of a silicon carbide fibre with high tensile strength. Nature, 1976, 261: 683

[2]

Chen YH, Chen ZK, Zhang RQ, He ZB, Li M, Xiong X. Structural evolution and mechanical properties of Cansas-III SiC fibers after thermal treatment up to 1700 ℃. J Eur Ceram Soc, 2021, 41: 5036

[3]

Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T. High-strength alkali-resistant sintered SiC fibre stable to 2,200 ℃. Nature, 1998, 391: 773

[4]

Ichikawa H. Polymer-derived ceramic fibers. Annu Rev Mater Res, 2016, 46: 335

[5]

Yang H, Li XQ, Liu CX, Zhao YH, Chen B, Yang X, Cheng LF, Zhang LT. Hydrothermal corrosion behavior of SiCf/SiC composites candidate for PWR accident tolerant fuel cladding. Ceram Int, 2018, 44: 22865

[6]

Terrani KA, Ang C, Snead LL, Katoh Y. Irradiation stability and thermo-mechanical properties of NITE-SiC irradiated to 10 dpa. J Nucl Mater, 2018, 499: 242

[7]

Flores O, Bordia RK, Nestler D, Krenkel W, Motz G. Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status. Adv Eng Mater, 2014, 16: 621

[8]

Christin F. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv Eng Mater, 2002, 4: 903

[9]

Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol, 2004, 64: 155

[10]

Yin XW, Cheng LF, Zhang LT, Travitzky N, Greil P. Fibre-reinforced multifunctional SiC matrix composite materials. Int Mater Rev, 2016, 62: 117

[11]

Mo R, Yin XW, Li MX, Ye F, Fan XM, Cheng LF. Relationship between microstructure and electromagnetic properties of SiC fibers. J Am Ceram Soc, 2020, 103: 4352

[12]

Wen B, Cao MS, Lu MM, Cao WQ, Shi HL, Liu J, Wang XX, Jin HB, Fang XY, Wang WZ, Yuan J. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater, 2014, 26: 3484

[13]

Zhao MJ, Zheng JH, Wang XX, Zhang JJ, Zhang DT. Gradient-structured SiCf/SiC hybrid woven metamaterials with superior broadband absorption and high-load bearing. Ceram Int, 2024, 50: 49400

[14]

Jing LH, Luo F, Pan HJ, Zhang LC, Deng LC, Xue YL, Wang XY. The dielectric adjustment in SiCf/mullite composites limited carbon content by in situ growth SiO2 layer. J Mater Sci Mater Electron, 2024, 35: 2095

[15]

Sawyer LC, Jamieson M, Brikowski D, Haider MI, Chen RT. Strength, structure, and fracture properties of ceramic fibers produced from polymeric precursors: I, base‐line studies. J Am Ceram Soc, 2005, 70: 798

[16]

Yin XW, Kong L, Zhang LT, Cheng LF, Travitzky N, Greil P. Electromagnetic properties of Si-C-N based ceramics and composites. Int Mater Rev, 2014, 59: 326

[17]

Luthra KL. Oxidation-resistant fiber coatings for non-oxide ceramic composites. J Am Ceram Soc, 2005, 80: 3253

[18]

Wu SF, Chen JX, Zhang XL, Xue HW, Liu YJ. Recent advances in interphase engineering for improved behavior of SiCf/SiC composites. J Eur Ceram Soc, 2024, 44: 6797

[19]

Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski RJ, Hasegawa A, Snead LL. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J Nucl Mater, 2014, 448: 448

[20]

Zhang Y, Chen JH, Yan DX, Wang SS, Li GY, Gou YZ. Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon, 2021, 182: 435

[21]

Liu HT, Yang LW, Sun X, Cheng HF, Wang CY, Mao WG, Molina-Aldareguia JM. Enhancing the fracture resistance of carbon fiber-reinforced SiC matrix composites by interface modification through a simple fiber heat-treatment process. Carbon, 2016, 109: 435

[22]

Fischbach DB, Lemoine PM. Influence of a CVD carbon coating on the mechanical property stability of Nicalon SiC fiber. Compos Sci Technol, 1990, 37 55

[23]

Li WJ, Liang FS, Sun XC, Zheng KY, Liu RJ, Yuan H, Cheng ST, Wang JN, Cheng Y, Huang KW, Wang K, Yang YY, Yang F, Tu C, Mao XY, Yin WJ, Cai AL, Wang XB, Qi Y, Liu ZF. Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat Commun, 2024, 15: 6825

[24]

Ma YJ, Yang SB, Meng XY, Kou SJ, Deng JL, Fan SW. Heat treatment effects on microstructure and mechanical properties of CVI SiC f/PyC/SiC composites with Cansas-III SiC fibers. J Eur Ceram Soc, 2023, 43 5940

[25]

Qi Y, Sun LZ, Liu ZF. Super graphene-skinned materials: an innovative strategy toward graphene applications. ACS Nano, 2024, 18: 4617

[26]

Huang KW, Liang FS, Sun JB, Zhang QC, Li ZH, Cheng ST, Li WJ, Yuan H, Liu RJ, Ge YS, Cheng Y, Wang K, Jiang J, Yang YY, Ma MY, Yang F, Tu C, Xie Q, Yin WJ, Wang XB, Qi Y, Liu ZF. Overcoming the incompatibility between electrical conductivity and electromagnetic transmissivity: a graphene glass fiber fabric design strategy. Adv Mater, 2024, 36 2313752

[27]

Wang K, Sun XC, Cheng ST, Cheng Y, Huang KW, Liu RJ, Yuan H, Li WJ, Liang FS, Yang YY, Yang F, Zheng KY, Liang ZW, Tu C, Liu MX, Ma MY, Ge YS, Jian MQ, Yin WJ, Qi Y, Liu ZF. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat Commun, 2024, 155054

[28]

Hay RS, Fair GE, Bouffioux R, Urban E, Morrow J, Hart A, Wilson M, Butt D. Hi-Nicalon™ -S SiC fiber oxidation and scale crystallization kinetics. J Am Ceram Soc, 2011, 94 3983

[29]

Schneider B, Guette A, Naslain R, Cataldi M, Costecalde A. A theoretical and experimental approach to the active-to-passive transition in the oxidation of silicon carbide. J Mater Sci, 1998, 33 535

[30]

Porte L, Sartre A. Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre. J Mater Sci, 1989, 24: 271

[31]

Lee WY, Lara‐Curzio E, More KL. Multilayered oxide interphase concept for ceramic‐matrix composites. J Am Ceram Soc, 2005, 81 717

[32]

Luong DX, Bets KV, Algozeeb WA, Stanford MG, Kittrell C, Chen WY, Salvatierra RV, Ren MQ, McHugh EA, Advincula PA, Wang Z, Bhatt M, Guo H, Mancevski V, Shahsavari R, Yakobson BI, Tour JM. Gram-scale bottom-up flash graphene synthesis. Nature, 2020, 577: 647

[33]

Garlow JA, Barrett LK, Wu LJ, Kisslinger K, Zhu YM, Pulecio JF. Large-area growth of turbostratic graphene on Ni(111) via physical vapor deposition. Sci Rep, 2016, 6: 19804

[34]

Geim AK. Graphene: status and prospects. Science, 2009, 324: 1530

[35]

Xiao Y, Ma CL, Xu H, Li GD, Liu CY, Zheng RX, Li L. Mechanical properties and microstructural evolution of Cansas-III SiC fibers after thermal exposure in different atmospheres. Ceram Int, 2022, 48 32804

[36]

Wang ZY, Li ZC, Li B, Shi AF, Zhang L, Zhu YB, Ye F, Yu SH. Functional carbon springs enabled dynamic tunable microwave absorption and thermal insulation. Adv Mater, 2024, 36 2412605

[37]

Naslain RR, Pailler RJF, Lamon JL. Single‐and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: an overview. Int J Appl Ceram Technol, 2010, 7 263

[38]

Burton JC, Sun L, Pophristic M, Lukacs SJ, Long FH, Feng ZC, Ferguson IT. Spatial characterization of doped SiC wafers by Raman spectroscopy. J Appl Phys, 1998, 84: 6268

[39]

Dong SM, Chollon G, Labrugère C, Lahaye M, Guette A, Bruneel JL, Couzi M, Naslain R, Jiang D. Characterization of nearly stoichiometric SiC ceramic fibres. J Mater Sci, 2001, 36: 2371

[40]

Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys, 2007, 9: 1276

[41]

Frank O, Tsoukleri G, Parthenios J, Papagelis K, Riaz I, Jalil R, Novoselov KS, Galiotis C. Compression behavior of single-layer graphenes. ACS Nano, 2010, 4: 3131

[42]

Zabel J, Nair RR, Ott A, Georgiou T, Geim AK, Novoselov KS, Casiraghi C. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett, 2012, 12: 617

[43]

Robinson J, Weng XJ, Trumbull K, Cavalero R, Wetherington M, Frantz E, LaBella M, Hughes Z, Fanton M, Snyder D. Nucleation of epitaxial graphene on SiC(0001). ACS Nano, 2009, 4: 153

[44]

Dou ZP, Chen ZL, Li N, Yang SY, Yu ZW, Sun YW, Li YH, Liu BY, Luo Q, Ma TB, Liao L, Liu ZF, Gao P. Atomic mechanism of strong interactions at the graphene/sapphire interface. Nat Commun, 2019, 10: 5013

[45]

Wen B, Cao M, Hou ZL, Song WL, Zhang L, Lu MM, Jin HB, Fang XY, Wang WZ, Cao MS. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65: 124

[46]

Irle S, Wang Z, Zheng GS, Morokuma K, Kusunoki M. Theory and experiment agree: single-walled carbon nanotube caps grow catalyst-free with chirality preference on a SiC surface. J Chem Phys, 2006, 125 044702

[47]

Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli MH. A growth mechanism for free-standing vertical graphene. Nano Lett, 2014, 14: 3064

[48]

Son IH, Park JH, Kwon S, Choi JW, Rümmeli MH. Graphene coating of silicon nanoparticles with CO2-enhanced chemical vapor deposition. Small, 2015, 12: 658

[49]

Kusunoki M, Suzuki T, Hirayama T, Shibata N, Kaneko K. A formation mechanism of carbon nanotube films on SiC(0001). Appl Phys Lett, 2000, 77: 531

[50]

Headrick RJ, Tsentalovich DE, Berdegué J, Bengio EA, Liberman L, Kleinerman O, Lucas MS, Talmon Y, Pasquali M. Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv Mater, 2018, 30: 1704482

[51]

Zhang Y, Wang YF, Chen JH, Yan DX, Zhang J, Gou YZ. Effects of PyC coating on SiC fibers after ultra-high temperature annealing. Ceram Int, 2022, 48: 6826

[52]

Ichikawa H. Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S. Ann Chim Sci Mat, 2000, 25: 523

[53]

Liu RJ, Yuan H, Li JL, Huang KW, Wang K, Cheng Y, Cheng ST, Li WJ, Jiang J, Tu C, Qi Y, Liu ZF. Complementary chemical vapor deposition fabrication for large-area uniform graphene glass fiber fabric. Small Methods, 2022, 6: 2200499

[54]

Huang H, Chen W, Chen S, Wee AT. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano, 2008, 2: 2513

[55]

Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syvajarvi M, Yakimova R, Kazakova O, Janssen TJ, Fal'ko V, Kubatkin S. Towards a quantum resistance standard based on epitaxial graphene. Nat Nanotechnol, 2010, 5 186

[56]

Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 2009, 8 203

[57]

Qiang SY, Wu F, Liu HL, Zeng SJ, Liu SY, Dai J, Zhang XH, Yu JY, Liu YT, Ding B. Integration of high strength, flexibility, and room-temperature plasticity in ceramic nanofibers. Nat Commun, 2025, 16: 3265

[58]

Shtein M, Pri-Bar I, Varenik M, Regev O. Characterization of graphene-nanoplatelets structure via thermogravimetry. Anal Chem, 2015, 87: 4076

[59]

Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8: 902

[60]

Cheng BC, Wu PY. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano, 2021, 15: 8676

[61]

Xu B, Yang HY, Luo RY, Wang LY, Huang JT, Chen D. Fabrication and performance of mini SiC/SiC composites with an electrophoresis-deposited BN fiber/matrix interphase. J Eur Ceram Soc, 2022, 42 1904

[62]

Pan HJ, Luo F, Qing YC, Chen Q, Wang CH, Ren ZW, Nan HY, Xuan L. Densification of SiCf/mullite composite via vacuum pressure impregnation process towards excellent mechanical and microwave absorbing performance. Ceram Int, 2024, 50 12405

[63]

Liang FS, Li WJ, Zheng KY, Huang KW, Cheng ST, Jiang WJ, Zhang QC, Liu RJ, Yang F, Yang YY, Yuan H, Wang JN, Gai XZ, Mao XY, Zhao YJ, Qi Y, Liu ZF. Graphene‐skinned alumina fiber fabric for diverse electrothermal and electromagnetic compatibility and its mass production. Adv Mater, 2025, 37 2501226

[64]

Almeida RSM, Chen SA, Besser B, Tushtev K, Li Y, Rezwan K. Fatigue behavior and damage analysis of PIP C/SiC composite. J Eur Ceram Soc, 2022, 42 5391

[65]

Du YZ, Liu YC, Wang AA, Kong J. Research progress and future perspectives on electromagnetic wave absorption of fibrous materials. iScience, 2023, 26 107873

[66]

Dai B, Ma Y, Dong F, Yu J, Ma ML, Thabet HK, El-Bahy SM, Ibrahim MM, Huang MN, Seok I, Roymahapatra G, Naik N, Xu B, Ding JX, Li TX. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compos Hybrid Mater, 2022, 5: 704

[67]

Lu MM, Cao WQ, Shi HL, Fang XY, Yang J, Hou ZL, Jin HB, Wang WZ, Yuan J, Cao MS. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A, 2014, 2: 10540

[68]

Wang SW, Hu GK, Jia YX, Xiang ZC, Yu B, Huang T, Zhu MF, Yu H. Highly efficient and ultra-wide broadband microwave absorption by carbon nanofiber/graphene oxide aerogel with multi-scale architecture. Carbon, 2025, 238 120313

[69]

Qu N, Xu GX, Liu YK, He MK, Xing RZ, Gu JW, Kong J. Multi‐scale design of metal-organic framework metamaterials for broad-band microwave absorption. Adv Funct Mater, 2024, 35 2402923

[70]

Huang YX, Song WL, Wang CX, Xu YN, Wei WY, Chen MJ, Tang LQ, Fang DN. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos Sci Technol, 2018, 162 206

[71]

Sun X, Li W, Qu HJ, Wang TJ, Han R, Feng HB, Wu W, Shui JL, He JP, Wang T, Liu XF. Multi-scale structural design of multilayer magnetic composite materials for ultra-wideband microwave absorption. Carbon, 2024, 230 119604

[72]

Feng WD, Zou LH, Lan CT, E SJ, Pu X. Core-sheath CNT@MXene fibers toward absorption-dominated electromagnetic interference shielding fabrics. Adv Fiber Mater, 2024, 6 1657

[73]

Zhang T, Duan YP, Liu JY, Pang HF, Huang LX, Ma XR, Shi YP, Ma B. Polarization insensitive hierarchical metamaterial for broadband microwave absorption with multi-scale optimization and integrated design. Compos Sci Technol, 2022, 228 109643

[74]

Lv F, Xiao ZY, Lu XJ, Chen MM. Three-dimensional ultra-broadband metamaterial absorber with full graphite structure. J Electron Mater, 2019, 49 689

[75]

Sun ZH, Yan ZQ, Yue KC, Li AR, Qian L. Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards microwave absorption. Appl Surf Sci, 2021, 538 147943

[76]

Wang CJ, Wang YX, Jiang HT, Feng YQ, Yang DL, Wang CG. A facile strategy for customizing multifunctional magnetic‑dielectric carbon microflower superstructures deposited with carbon nanotubes. J Mater Sci Technol, 2025, 223 34

[77]

Liu ZL, Zhao X, Xue FH, Xu LL, Chen H, Chen Z, Yan Q, Xiong JH, Zheng HW, Li PY, Lian HX, Chen YX, Peng QY, He XD. Shear‐rheological‐assisted MXene dispersion in epoxy resin for efficient electromagnetic absorption. Adv Funct Mater, 2024, 34 2409069

Funding

National Natural Science Foundation of China(22475026)

Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD-202001)

Fundamental Research Funds for the Central Universities(JUSRP202504014)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/