Lizard Scale-Inspired Asymmetric Solar-Confined Textiles Enabling Scalable Bi-directional Thermoregulation

Advanced Fiber Materials ›› : 1 -12.

PDF
Advanced Fiber Materials ›› :1 -12. DOI: 10.1007/s42765-025-00655-1
Research Article
research-article

Lizard Scale-Inspired Asymmetric Solar-Confined Textiles Enabling Scalable Bi-directional Thermoregulation

Author information +
History +
PDF

Abstract

Integration of radiative cooling and heating within a single textile is essential for effectively maintaining human thermal comfort and reducing energy consumption. However, most existing radiative thermal-management textiles depend either on complex micro/nanostructure fabrication techniques or on the simple stacking of cooling and heating layers, both of which substantially limit their scalability and long-term durability in practical applications. Here, we report a scalable dual-mode thermal management textile with biomimetic asymmetric solar confinement (ASCT), achieved through the design of asymmetric micro/nano-structures guided by controlled fiber-orientation alignment. ASCT demonstrates excellent solar modulation capability, with the high solar confinement (HSC) side exhibiting a solar absorptance of 97%, while the low solar confinement (LSC) side maintains a significantly lower absorptance of only 4.9%. Additionally, the mid-infrared (MIR) emissivity contrast between the two sides reaches up to 40%. Compared to conventional textiles, ASCT significantly enhances the thermal modulation range by up to 15 °C. More importantly, ASCT has mechanical robustness, breathability, softness, and durability tailored for wearable applications. This work offers a novel path to the structural design and scalable fabrication of textiles, which is expected to accelerate their advancement and practical deployment.

Graphical abstract

Cite this article

Download citation ▾
Xiaoyan Li, Zhiguang Guo, Yating Ji, Yu Xie, Peibo Du, Jie Wang, Yunfan Xue, Bi Xu, Zaisheng Cai. Lizard Scale-Inspired Asymmetric Solar-Confined Textiles Enabling Scalable Bi-directional Thermoregulation. Advanced Fiber Materials 1-12 DOI:10.1007/s42765-025-00655-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sharma S, Dua A, Singh M, Kumar N, Prakash S. Fuzzy rough set based energy management system for self-sustainable smart city. Renew Sustain Energy Rev, 2018, 82: 3633.

[2]

Cao C, Ji S, Jiang Y, Su J, Xia H, Li H, Tian C, Wong YJ, Feng X, Chen X. Mitigating the overheat of stretchable electronic devices via high-enthalpy thermal dissipation of hydrogel encapsulation. Adv Mater, 2024, 36: 2401875.

[3]

Wang J, Li Y, Liu X, Shen C, Zhang H, Xiong K. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China. Chin J Aeronaut, 2021, 34: 1.

[4]

Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule, 2020, 4: 724.

[5]

Ye C, Zhao L, Yang S, Li X. Recent research on preparation and application of smart Joule heating fabrics. Small, 2024, 20: 2309027.

[6]

Wang H, Soong WL, Pourmousavi SA, Zhang X, Ertugrul N, Xiong B. Thermal dynamics assessment of vanadium redox flow batteries and thermal management by active temperature control. J Power Sources, 2023, 570233027

[7]

Woods J, James N, Kozubal E, Bonnema E, Brief K, Voeller L, Rivest J. Humidity’s impact on greenhouse gas emissions from air conditioning. Joule, 2022, 6: 726.

[8]

Lin K, Chen S, Zeng Y, Ho TC, Zhu Y, Wang X, Liu F, Huang B, Chao CY-H, Wang Z, Tso CY. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science, 2023, 382691

[9]

Cai L, Song AY, Li W, Hsu PC, Lin D, Catrysse PB, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater, 2018, 30: 1802152.

[10]

Wang Z, Kortge D, Zhu J, Zhou Z, Torsina H, Lee C, Bermel P. Lightweight, passive radiative cooling to enhance concentrating photovoltaics. Joule, 2020, 4: 2702.

[11]

Hsu P-C, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu C-L, Catrysse PB, Cai L, Zhai S, Majumdar A, Fan S, Cui Y. A dual-mode textile for human body radiative heating and cooling. Sci Adv, 2017, 3e1700895

[12]

Cheng N, Wang Z, Lin Y, Li X, Zhang Y, Ding C, Wang C, Tan J, Sun F, Wang X, Yu J, Ding B. Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv Mater, 2024, 36: 2403223.

[13]

Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett, 2023, 15: 160.

[14]

Zhang Q, Lv Y, Wang Y, Yu S, Li C, Ma R, Chen Y. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat Commun, 2022, 13: 4874

[15]

Zhang Q, Qi C, Wang XY, Zhu B, Li W, Xiao XF, Fu HY, Hu S, Zhu SN, Xu WL, Zhu J. Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat Chem Eng, 2024, 1: 301.

[16]

Chen YH, Hwang CW, Chang SW, Tsai MT, Jayakumaran KN, Yang LC, Lo YC, Ko FH, Wang HC, Chen HL, Wan D. Eco-friendly transparent silk fibroin radiative cooling film for thermal management of optoelectronics. Adv Funct Mater, 2023, 33: 2301924.

[17]

Guo ZG, Xiong PQ, Nan HF, Yan DX, Zhong GJ, Lei J, Li ZM. Molecular confinement engineering induced super thermostable and RT-adjustable Gel for Tri-heat-channeled smart window. Adv Funct Mater, 2024, 35: 2415208.

[18]

Xiang B, Zhang R, Zeng X, Luo Y, Luo Z. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv Fiber Mater, 2022, 4: 1058.

[19]

Li W, Shi Y, Chen Z, Fan S. Photonic thermal management of coloured objects. Nat Commun, 2018, 9: 4240

[20]

Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 2021, 373: 692

[21]

Li B, Wang M, Ao S, Lyu K, Su X, Sun F. Knitting-stitching bifacial metafabrics with switchable thermal and moisture transmissibility for multimodal dynamic personal thermoregulation. Mater Horiz, 2025, 12: 642

[22]

Yan Z, Zhai H, Fan D, Li Q. A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today, 2023, 51101897

[23]

Xie W, Xiao C, Sun Y, Fan Y, Zhao B, Zhang D, Fan T, Zhou H. Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv Funct Mater, 2023, 332305734

[24]

Chen ZP, Zhang Q, Ding LP, Lv GX, Liu TJ, Yang ZW, Jiang Y, Li LN, Li W, Ding F, Xu WL, Zhu J, Zhu B. An infrared-transparent textile with high drawing processed Nylon 6 nanofibers. Nat Commun, 2025, 162009

[25]

An S, Shi B, Jiang M, Fu B, Song C, Tao P, Shang W, Deng T. Biological and bioinspired thermal energy regulation and utilization. Chem Rev, 2023, 123: 7081

[26]

He J, Zhang Q, Zhou Y, Chen Y, Ge H, Tang S. Bioinspired polymer films with surface ordered pyramid arrays and 3D hierarchical pores for enhanced passive radiative cooling. ACS Nano, 2024, 18: 11120

[27]

Ishac M. Adaptive building skins inspired by lizards in the hot desert climate of Egypt. PowerSkin Conference. Technical University of Munich, 2022.

[28]

Allam AA, Abo-Eleneen RE, Othman SI. Microstructure of scales in selected lizard species. Saudi J Biol Sci, 2019, 26: 129

[29]

Sun B-J, Li W-M, Lv P, Wen G-N, Wu D-Y, Tao S-A, Liao M-L, Yu C-Q, Jiang Z-W, Wang Y, Xie H-X, Wang X-F, Chen Z-Q, Liu F, Du W-G. Genetically encoded lizard color divergence for camouflage and thermoregulation. Mol Biol Evol, 2024, 41msae009

[30]

Gunderson AR, Riddell EA, Sears MW, Rosenblum EB. Thermal costs and benefits of replicated color evolution in the White Sands Desert lizard community. Am Nat, 2022

[31]

Xue S, Huang G, Chen Q, Wang X, Fan J, Shou D. Personal thermal management by radiative cooling and heating. Nano-Micro Lett, 2024, 16: 153.

[32]

Ly KCS, Liu X, Song X, Xiao C, Wang P, Zhou H, Fan T. A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv Funct Mater, 2022, 322203789

[33]

Tian Y, Song R, Li Y, Zhu R, Yang X, Wu D, Wang X, Song J, Yu J, Gao T, Li F. Biomimetic structural design of fabric for low-cost, scalable, and highly efficient off-grid solar-driven water purification. Adv Funct Mater, 2024, 342309470

[34]

Yang X, Tian Y, Zhou R, Xia F, Gong Y, Zhang C, Ji F, Liu L, Li F, Zhang R, Yu J, Gao T. Bioinspired design of textile-based absorbers: photothermal and electrothermal synergistic conversion for efficient clean-up of heavy oil. Adv Fiber Mater, 2024, 6: 1446.

[35]

McCarthy A, Sharma NS, Holubeck PA, Brown D, Shah R, McGoldrick D, John JV, Shahriar SMS, Xie J. Extracellular matrix secretion mechanically reinforces interlocking interfaces. Adv Mater, 2023, 352207335

[36]

Wang J, Shen M, Liu Z, Wang W. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy, 2022, 97107177

[37]

Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 2017, 11: 3752

[38]

Liu R, Wang S, Zhou Z, Zhang K, Wang G, Chen C, Long Y. Materials in radiative cooling technologies. Adv Mater, 2024, 372401577

[39]

Cai L, Song AY, Li W, Hsu PC, Lin D, Catrysse PB, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater, 2018, 301802152

[40]

Zhu B, Li W, Zhang Q, Li D, Liu X, Wang Y, Xu N, Wu Z, Li J, Li X, Catrysse PB, Xu W, Fan S, Zhu J. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol, 2021, 16: 1342

[41]

Bai Z, Jia K, Liu C, Wang L, Lin G, Huang Y, Liu S, Liu X. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv Funct Mater, 2021, 312104701

[42]

Yang W, Pan M, Zhang J, Zhang L, Lin F, Liu X, Huang C, Chen XZ, Wang J, Yan B, Zeng H. A universal strategy for constructing robust and antifouling cellulose nanocrystal coating. Adv Funct Mater, 2022, 322109989

[43]

Li X, Ji Y, Fan Z, Du P, Xu B, Cai Z. Asymmetrical emissivity and wettability in stitching treble weave metafabric for synchronous personal thermal-moisture management. Small, 2023, 19: 2300297.

[44]

Wang L, Liu Y, Bi R, Zhang X, Chen Y, Valenzuela C, Yang Y, Liu H, Yang L, Feng W. Cephalopod‐inspired MXene‐integrated mechanochromic cholesteric liquid crystal elastomers for visible‐infrared‐radar multispectral camouflage. Angew Chem Int Ed, 2025, 64e202422636

[45]

Hunter L, Fan J. Engineering apparel fabrics and garments: waterproofing and breathability of fabrics and garments. In Woodhead Publishing Series in Textiles: Woodhead Publishing. In: Fan J, Hunter L, editors.

[46]

Huang Q, Zheng Z. Pathway to developing permeable electronics. ACS Nano, 2022, 16: 15537

[47]

Deng X, Mammen L, Butt H-J, Vollmer D. Candle soot as a template for a transparent robust superamphiphobic coating. Science, 2012, 335: 67

[48]

Zhang J, Zheng J, Gao M, Xu C, Cheng Y, Zhu M. Nacre-mimetic nanocomposite aerogels with exceptional mechanical performance for thermal superinsulation at extreme conditions. Adv Mater, 2023, 352300813

[49]

Zhang W, Wang D, Sun Z, Song J, Deng X. Robust superhydrophobicity: mechanisms and strategies. Chem Soc Rev, 2021, 50: 4031

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

/