Bioplastic Fibres: Processing, Properties, Applications and Challenges

Shazed Aziz , Pejman Heidarian , Vincent Mathel , Tony McNally , Ton Peijs , Ashok Kumar Nanjundan , Russell J. Varley , Peter J. Halley , Luigi-Jules Vandi

Advanced Fiber Materials ›› : 1 -31.

PDF
Advanced Fiber Materials ›› :1 -31. DOI: 10.1007/s42765-025-00647-1
Review
review-article

Bioplastic Fibres: Processing, Properties, Applications and Challenges

Author information +
History +
PDF

Abstract

Polymer fibres are foundational to modern material systems, offering adjustable mechanical properties, chemical functionality and formability across sectors such as textiles, packaging, biomedical and composites. Bioplastic fibres, derived from renewable or biodegradable polymers, present a promising route toward reducing dependence on petrochemical resources while supporting circular material flows. However, translating bioplastic fibres into competitive alternatives requires overcoming their intrinsic limitations in processability, cost and end-of-life management, to fully reap their benefits. This review evaluates the materials, processing techniques and structure–property relationships underpinning bioplastic fibre performance. Emphasis is placed on molecular orientation, crystallinity and surface functionality as determinants of mechanical, thermal and biodegradation behaviour of bioplastic fibres. Fibre-specific challenges such as brittleness, moisture sensitivity, narrow thermal processing windows and blend incompatibility are discussed in the context of polymer physics, chemical modification and advanced manufacturing. Opportunities arising from copolymerisation, nanocomposite integration, functionalisation and closed-loop recycling are explored with cross-sectoral examples. This review provides a scientifically rigorous, application-focused framework to guide the sustainable development and industrial adoption of bioplastic fibre technologies.

Graphical Abstract

Keywords

Bioplastics / Biopolymers / Polymer fibres / Polymer processing / Sustainable materials / Biodegradation

Cite this article

Download citation ▾
Shazed Aziz, Pejman Heidarian, Vincent Mathel, Tony McNally, Ton Peijs, Ashok Kumar Nanjundan, Russell J. Varley, Peter J. Halley, Luigi-Jules Vandi. Bioplastic Fibres: Processing, Properties, Applications and Challenges. Advanced Fiber Materials 1-31 DOI:10.1007/s42765-025-00647-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv, 2017, 3: e1700782

[2]

Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent advances in bioplastics: application and biodegradation. Polymers, 2020, 12: 920

[3]

Atiwesh G, Mikhael A, Parrish CC, Banoub J, Le T-AT. Environmental impact of bioplastic use: a review. Heliyon, 2021, 7: e07918

[4]

Kibria MG, Masuk NI, Safayet R, Nguyen HQ, Mourshed M. Plastic waste: challenges and opportunities to mitigate pollution and effective management. Int J Environ Res, 2023, 17: 20

[5]

Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S. Degradation rates of plastics in the environment. ACS Sustain Chem Eng, 2020, 8: 3494

[6]

Myalenko D, Fedotova O. Physical, mechanical, and structural properties of the polylactide and polybutylene adipate terephthalate (PBAT)-based biodegradable polymer during compost storage. Polymers, 2023, 15: 1619

[7]

Rosenboom J-G, Langer R, Traverso G. Bioplastics for a circular economy. Nat Rev Mater, 2022, 7: 117

[8]

Chiloeches A, Fernández-García R, Fernández-García M, Mariano A, Bigioni I, Scotto d'Abusco A, Echeverría C, Muñoz-Bonilla A. PLA and PBAT-based electrospun fibers functionalized with antibacterial bio-based polymers. Macromol Biosci, 2023, 23: 2200401

[9]

The future of plastic. Nat Commun. 2018;9:2157

[10]

Zheng J, Suh S. Strategies to reduce the global carbon footprint of plastics. Nat Clim Chang, 2019, 9: 374.

[11]

Arora NK, Mishra I. United Nations sustainable development goals 2030 and environmental sustainability: race against time. Environ Sustain, 2019, 2: 339.

[12]

Takarada W, Sugimoto K, Nakajima H, Visser HA, Gruter G-JM, Kikutani T. Melt-spun fibers from bio-based polyester–fiber structure development in high-speed melt spinning of poly(ethylene 2,5-furandicarboxylate) (PEF). Materials, 2021, 14: 1172

[13]

Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J, 2003, 16: 125

[14]

Persson M, Cho S-W, Skrifvars M. The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials. J Mater Sci, 2013, 48: 3055

[15]

Frazza EJ, Schmitt EE. A new absorbable suture. J Biomed Mater Res, 1971, 5: 43

[16]

Miao Y, Cui H, Dong Z, Ouyang Y, Li Y, Huang Q, Wang Z. Structural evolution of polyglycolide and poly(glycolide-co-lactide) fibers during in vitro degradation with different heat-setting temperatures. ACS Omega, 2021, 6: 29254

[17]

Naeimirad M, Krins B, Gruter G-JM. A review on melt-spun biodegradable fibers. Sustainability, 2023, 15: 14474

[18]

Cooper CJ, Mohanty AK, Misra M. Electrospinning process and structure relationship of biobased poly(butylene succinate) for nanoporous fibers. ACS Omega, 2018, 3: 5547

[19]

Shen L, Haufe J, Patel MK. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. Rep EPNOE Eur Bioplast, 2009, 243: 1

[20]

Gupta VBGupta VB, Kothari VK. Melt-spinning processes. Manufactured fibre technology, 1997, Dordrecht. Springer67.

[21]

Yuan X, Mak AFT, Kwok KW, Yung BKO, Yao K. Characterization of poly(L-lactic acid) fibers produced by melt spinning. J Appl Polym Sci, 2001, 81: 251

[22]

Katayama K, Nakamura K, Amano T. Structural formation during melt spinning process. Kolloid-Zeitschrift & Zeitschrift für Polymere, 1968, 226: 125

[23]

Kopf S, Åkesson D, Skrifvars M. Textile fiber production of biopolymers – a review of spinning techniques for polyhydroxyalkanoates in biomedical applications. Polym Rev, 2023, 63: 200

[24]

Vadas D, Kmetykó D, Marosi G, Bocz K. Application of melt-blown poly(lactic acid) fibres in self-reinforced composites. Polymers, 2018, 10: 766

[25]

Winnacker M. Selected recent advances in the utilization of biopolymers for nano- and microfiber materials and nonwovens production. Macromol Mater Eng, 2025, 310: 2400380

[26]

Valizadeh A, Mussa Farkhani S. Electrospinning and electrospun nanofibres. IET Nanobiotechnol, 2014, 8: 83

[27]

Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev, 2012, 41: 4708

[28]

Wang XX, Yu GF, Zhang J, Yu M, Ramakrishna S, Long YZ. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog Mater Sci, 2021, 115: 100704

[29]

Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci, 2019, 90: 1

[30]

Yao J, Bastiaansen CWM, Peijs T. High strength and high modulus electrospun nanofibers. Fibers, 2014, 2: 158.

[31]

Peijs TBeaumont PWR, Zweben CH. 6.7 Electrospun polymer nanofibers and their composites. Comprehensive composite materials II, 2018, Oxford. Elsevier162.

[32]

Zhang X, Shi X, Gautrot JE, Peijs T. Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites, 2021, 7: 1.

[33]

Rohani Shirvan A, Nouri A, Sutti A. A perspective on the wet spinning process and its advancements in biomedical sciences. Eur Polym J, 2022, 181: 111681

[34]

Radishevskii MB, Serkov AT. Coagulation mechanism in wet spinning of fibres. Fibre Chem, 2005, 37: 266

[35]

Temesgen S, Rennert M, Tesfaye T, Nase M. Review on spinning of biopolymer fibers from starch. Polymers, 2021, 13: 1121

[36]

Maduna L, Patnaik A. Challenges associated with the production of nanofibers. Processes, 2024, 12: 2100

[37]

Hufenus R, Yan Y, Dauner M, Kikutani T. Melt-spun fibers for textile applications. Materials, 2020, 13: 4298

[38]

Kudryavtsev GI. Some unresolved problems in the theory of spinning fibres from stiff-chain polymers. Fibre Chem, 1985, 16: 164.

[39]

Zhou FL, Gong RH. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int, 2008, 57: 837

[40]

Barletta M, Genovesi A, Desole MP, Gisario A. Melt processing of biodegradable poly(butylene succinate) (PBS)—a critical review. Clean Technol Environ Policy, 2024, 27: 683.

[41]

Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C. Biodegradable fibres of poly(l-lactic acid) produced by melt spinning. Polymer, 1997, 38: 79

[42]

Motloung MP, Mofokeng TG, Mokhena TC, Ray SS. Recent advances on melt-spun fibers from biodegradable polymers and their composites. Int Polym Process, 2022, 37: 523

[43]

Rodchanasuripron W, Seadan M, Suttiruengwong S. Properties of non-woven polylactic acid fibers prepared by the rotational jet spinning method. Mater Today Sustain, 2020, 10: 100046

[44]

Tavanaie MALatifi M. 9 - Engineered biodegradable melt-spun fibers. Engineered polymeric fibrous materials, 2021, Delhi. Woodhead Publishing191.

[45]

Heidarian P, Aziz S, Halley PJ, McNally T, Peijs T, Vandi L-J, Varley RJ. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) self-reinforced composites via solvent-induced interfiber welding of nanofibers. Biomacromol, 2024, 25: 5039

[46]

Casasola R, Thomas NL, Trybala A, Georgiadou S. Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer, 2014, 55: 4728

[47]

Canizales-Rodríguez DF, Rodríguez-Félix F, Tapia-Hernández JA, Del-Toro-Sánchez CL, Ruíz-Cruz S, Aubourg SP, Castro-Enríquez DD, Barreras-Urbina CG, Burruel-Ibarra SE, Pompa-Ramos JL, Armenta-Villegas L. Food grade nanofiber of polylactic acid by electrospinning: physicochemical characterization of solutions and parameters of the technique. J Food Qual, 2024, 2024: 5579613.

[48]

Huang C, Thomas NL. Fabricating porous poly(lactic acid) fibres via electrospinning. Eur Polym J, 2018, 99: 464

[49]

Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci Part A, 2001, 38: 1231.

[50]

Yang Y, Zhang M, Ju Z, Tam PY, Hua T, Younas MW, Kamrul H, Hu H. Poly(lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications. Text Res J, 2020, 91: 1641.

[51]

Giełdowska M, Puchalski M, Sztajnowski S, Krucińska I. Evolution of the molecular and supramolecular structures of PLA during the thermally supported hydrolytic degradation of wet spinning fibers. Macromolecules, 2022, 55: 10100.

[52]

Fabris C, Perin D, Fredi G, Rigotti D, Bortolotti M, Pegoretti A, Xanthopoulou E, Bikiaris DN, Dorigato A. Improving the wet-spinning and drawing processes of poly(lactide)/poly(ethylene furanoate) and polylactide/poly(dodecamethylene furanoate) fiber blends. Polymers, 2022, 14: 2910

[53]

Puppi D, Chiellini F. Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds. Polym Int, 2017, 66: 1690

[54]

Degeratu CN, Mabilleau G, Aguado E, Mallet R, Chappard D, Cincu C, Stancu IC. Polyhydroxyalkanoate (PHBV) fibers obtained by a wet spinning method: good in vitro cytocompatibility but absence of in vivo biocompatibility when used as a bone graft. Morphologie, 2019, 103: 94

[55]

Walker J, Melaj M, Giménez R, Pérez E, Bernal C. Solid-state drawing of commercial poly(lactic acid) (PLA) based filaments. Front Mater, 2019, 6: 280.

[56]

Nishida M, Tanaka T, Tanaka T, Hayakawa Y. Nucleating and plasticization effects in drawn poly(lactic acid) fiber during accelerated weathering degradation. Polymers, 2018, 10: 365

[57]

Schmack G, Jehnichen D, Vogel R, Tändler B. Biodegradable fibers of poly(3-hydroxybutyrate) produced by high-speed melt spinning and spin drawing. J Polym Sci Part B Polym Phys, 2000, 38: 2841

[58]

Li L, Huang W, Wang B, Wei W, Gu Q, Chen P. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer, 2015, 68: 183

[59]

de Montes Oca H, Ward IM. Structure and mechanical properties of PGA crystals and fibres. Polymer, 2006, 47: 7070.

[60]

Farid M, Khair KU, Bakht S, Azhar W, Shakoor MB, Zubair M, Rizwan M, Farid S, Ishaq HK, Ali STahir MB, Rafique M, Sagir M. Production of bioplastics by different methods—a step toward green economy: a review. Nanotechnology: trends and future applications, 2021, Singapore. Springer109.

[61]

Negrete-Bolagay D, Guerrero VH. Opportunities and challenges in the application of bioplastics: perspectives from formulation, processing, and performance. Polymers, 2024, 16: 2561

[62]

Basar AO, Prieto C, Pardo-Figuerez M, Lagaron JM. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) electrospun nanofibers containing natural deep eutectic solvents exhibiting a 3d rugose morphology and charge retention properties. ACS Omega, 2023, 8: 3798

[63]

Peterlin A. Molecular model of drawing polyethylene and polypropylene. J Mater Sci, 1971, 6: 490

[64]

Capaccio G, Ward IM. Preparation of ultra-high modulus linear polyethylenes; effect of molecular weight and molecular weight distribution on drawing behaviour and mechanical properties. Polymer, 1974, 15: 233

[65]

Brodin M, Vallejos M, Opedal MT, Area MC, Chinga-Carrasco G. Lignocellulosics as sustainable resources for production of bioplastics – a review. J Clean Prod, 2017, 162: 646

[66]

Singhvi M, Gokhale D. Biomass to biodegradable polymer (PLA). RSC Adv, 2013, 3: 13558

[67]

Bioplastics LM. In Kirk-Othmer encyclopedia of chemical technology, 2015, Hoboken. John Wiley & Sons1

[68]

Chan JX, Wong JF, Hassan A, Zakaria ZSaba N, Jawaid M, Thariq M. 8 - Bioplastics from agricultural waste. Biopolymers and biocomposites from agro-waste for packaging applications, 2021, Cambridge. Woodhead Publishing141.

[69]

Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Synthesis and commercialization of bioplastics: organic waste as a sustainable feedstock. Sci Total Environ, 2023, 904: 167243

[70]

Zhao X, Wang Y, Chen X, Yu X, Li W, Zhang S, Meng X, Zhao Z-M, Dong T, Anderson A, Aiyedun A, Li Y, Webb E, Wu Z, Kunc V, Ragauskas A, Ozcan S, Zhu H. Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 2023, 6: 97

[71]

Xie B, Zhang J, Sun H, Bai R, Lu D, Zhu Y, Dong W, Zhou J, Jiang M. Computational design of an efficient and thermostable esterase for polylactic acid depolymerization. Green Chem, 2024, 26: 7268

[72]

Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(l-lactide). Polymer, 2000, 41: 8921

[73]

Echeverría C, Limón I, Muñoz-Bonilla A, Fernández-García M, López D. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers. Polymers, 2021, 13: 2860

[74]

Marx B, Bostan L, Herrmann AS, Boskamp L, Koschek K. Properties of stereocomplex PLA for melt spinning. Polymers, 2023, 15: 4510

[75]

Zhong C-N, Liu Y-D, Tang J, Chen W-S, Li S-C, Shao J, Hou H-Q. A facile strategy to enhance the formation of stereocomplex crystallites in poly(l-lactic acid)/poly(d-lactic acid) blend with high molecular weights. Chin J Polym Sci, 2023, 41: 1115

[76]

Pandey AK, Takagi H, Igarashi N, Shimizu N, Sakurai S. Enhanced formation of stereocomplex crystallites in poly(l-lactic acid)/Poly(d-lactic acid) blends by silk fibroin nanodisc. Polymer, 2021, 229: 124001

[77]

Hossain KMZ, Parsons AJ, Rudd CD, Ahmed I, Thielemans W. Mechanical, crystallisation and moisture absorption properties of melt drawn polylactic acid fibres. Eur Polym J, 2014, 53: 270

[78]

Cho T-Y, Strobl G. Temperature dependent variations in the lamellar structure of poly(l-lactide). Polymer, 2006, 47: 1036

[79]

Schmack G, Tändler B, Vogel R, Beyreuther R, Jacobsen S, Fritz HG. Biodegradable fibers of poly(L-lactide) produced by high-speed melt spinning and spin drawing. J Appl Polym Sci, 1999, 73: 2785

[80]

Mai F, Tu W, Bilotti E, Peijs T. The influence of solid-state drawing on mechanical properties and hydrolytic degradation of melt-spun poly(lactic acid) (PLA) tapes. Fibers, 2015, 3: 523

[81]

Zhao T, Yu J, Pan H, Zhao Y, Zhang Q, Yu X, Bian J, Han L, Zhang H. Super-tough polylactic acid (PLA)/poly(butylene succinate) (PBS) materials prepared through reactive blending with epoxy-functionalized PMMA-GMA copolymer. Int J Biol Macromol, 2023, 251: 126150

[82]

Mokhena TC, Mochane MJ, Sadiku ER, Agboola O, John MJGnanasekaran D. Opportunities for PLA and its blends in various applications. Green biopolymers and their nanocomposites, 2019, Singapore. Springer Singapore55.

[83]

Ali A, El-Dessouky H. An insight on the process–property relationships of melt spun polylactic acid fibers. Text Res J, 2019, 89: 4959

[84]

Lamberti FM, Román-Ramírez LA, Wood J. Recycling of bioplastics: routes and benefits. J Polym Environ, 2020, 28: 2551

[85]

Pelegrini K, Donazzolo I, Brambilla V, Coulon Grisa AM, Piazza D, Zattera AJ, Brandalise RN. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J Appl Polym Sci, 2016, 133: 43290.

[86]

Zhou W, Bergsma S, Colpa DI, Euverink G-JW, Krooneman J. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. J Environ Manage, 2023, 341: 118033

[87]

Hathi ZJ, Haque MA, Priya A, Qin Z-h, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. Environ Res, 2022, 215: 114323

[88]

Alvarez Chavez B, Raghavan V, Tartakovsky B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv, 2022, 12: 16105

[89]

Modi S, Koelling K, Vodovotz Y. Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J, 2011, 47: 179

[90]

Rivera-Briso AL, Serrano-Aroca Á. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers, 2018, 10: 732

[91]

Righetti MC, Aliotta L, Mallegni N, Gazzano M, Passaglia E, Cinelli P, Lazzeri A. Constrained amorphous interphase and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Front Chem, 2019, 7: 790

[92]

McAdam B, Brennan Fournet M, McDonald P, Mojicevic M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers, 2020, 12: 2908

[93]

Sombatmankhong K, Suwantong O, Waleetorncheepsawat S, Supaphol P. Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. J Polym Sci Part B Polym Phys, 2006, 44: 2923

[94]

Pivsa-Art S, Srisawat N, O-Charoen N, Pavasupree S, Pivsa-Art W. Preparation of knitting socks from poly (lactic acid) and poly [(r)-3-hydroxybutyrate-co-(r)-3-hydroxyvalerate] (PHBV) blends for textile industrials. Energy Procedia, 2011, 9: 589

[95]

Mathel V, Aziz S, Guo X, Bertling K, Rakić AD, Heitzmann MT, Vandi L-J. Wood/PHAs biocomposites with mechanical properties comparable to conventional plastics: model-based prediction and experimental validation. Compos A Appl Sci Manuf, 2025, 194: 108916

[96]

Turner A, Zainuddin S, Kodali D, Jeelani S, editors. Characterization of multi-walled carbon nanotube reinforced into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-epoxidized natural rubber 50 (ENR50) biofilms. In: TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. Cham: Springer International Publishing; 2022. p 736.

[97]

Tomano N, Boondamnoen O, Aumnate C, Potiyaraj P. Enhancing impact resistance and biodegradability of PHBV by melt blending with ENR. Sci Rep, 2022, 12: 22633

[98]

Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ. Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci, 2002, 86: 2145

[99]

Kaniuk Ł, Stachewicz U. Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomater Sci Eng, 2021, 7: 5339

[100]

Xu JK, Zhang L, Li DL, Bao JB, Wang ZB. Foaming of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with supercritical carbon dioxide: foaming performance and crystallization behavior. ACS Omega, 2020, 5: 9839

[101]

Liu H, Li H, Hu Z. The influence of spinning process on the properties and structure of PBS fibers. Polymers, 2025, 17: 1138

[102]

Xiang H, Chen Z, Zheng N, Zhang X, Zhu L, Zhou Z, Zhu M. Melt-spun microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers with enhanced toughness: synergistic effect of heterogeneous nucleation, long-chain branching and drawing process. Int J Biol Macromol, 2019, 122: 1136

[103]

Hufenus R, Reifler FA, Maniura-Weber K, Zinn M, Spierings A, Hänggi UJ, editors. Biodegradable fibers from renewable sources: Melt spinning of polyhydroxyalkanoates (PHAs). In: Proceedings of the Fiber Society Spring 2013 Technical Conference, Geelong, VIC, Australia; 2013. P 1.

[104]

Lyshtva P, Voronova V, Barbir J, Leal Filho W, Kröger SD, Witt G, Miksch L, Saborowski R, Gutow L, Frank C, Emmerstorfer-Augustin A, Agustin-Salazar S, Cerruti P, Santagata G, Stagnaro P, D'Arrigo C, Vignolo M, Krång A-S, Strömberg E, Lehtinen L, Annunen V. Degradation of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) compound in different environments. Heliyon, 2024, 10: e24770

[105]

Jabeen N, Atif M. Polysaccharides based biopolymers for biomedical applications: a review. Polym Adv Technol, 2024, 35: e6203

[106]

Little A, Ma S, Haddleton DM, Tan B, Sun Z, Wan C. Synthesis and characterization of high glycolic acid content poly(glycolic acid-co-butylene adipate-co-butylene terephthalate) and poly(glycolic acid-co-butylene succinate) copolymers with improved elasticity. ACS Omega, 2023, 8: 38658

[107]

Gopalan GP, Anas SThomas S, Ar A, Jose Chirayil C, Thomas B. Structural, morphological, and textural properties of biopolymers. Handbook of biopolymers, 2022, Singapore. Springer Nature Singapore1

[108]

Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull, 2023, 80: 7247

[109]

de Montes Oca H, Farrar DF, Ward IM. Degradation studies on highly oriented poly(glycolic acid) fibres with different lamellar structures. Acta Biomater, 2011, 7: 1535.

[110]

De Mulder ELW, Buma P, Hannink G. Anisotropic porous biodegradable scaffolds for musculoskeletal tissue engineering. Materials, 2009, 2: 1674

[111]

Hosseini V, Evrova O, Hoerstrup SP, Vogel V. A simple modification method to obtain anisotropic and porous 3D microfibrillar scaffolds for surgical and biomedical applications. Small, 2018, 14: 1702650.

[112]

Anscombe AR, Hira N, Hunt B. The use of a new absorbable suture material (polyglycolic acid)* in general surgery. Br J Surg, 1970, 57: 917

[113]

Chen Z, Zhang X, Fu Y, Jin Y, Weng Y, Bian X, Chen X. Degradation behaviors of polylactic acid, polyglycolic acid, and their copolymer films in simulated marine environments. Polymers, 2024, 16: 1765

[114]

Wang B, Zhang P, Song W, Zhao L, He C. Modification of polyglycolic acid and poly lactic-co-glycolic acid fibers by ultrasonic treatment for enhancing hydrophilicity and cytocompatibility. J Ind Text, 2016, 45: 516

[115]

Kim G, Gavande V, Shaikh V, Lee W-K. Degradation behavior of poly(lactide-co-glycolide) monolayers investigated by langmuir technique: accelerating effect. Molecules, 2023, 28: 4810

[116]

Jem JK, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res, 2020, 3: 60

[117]

Vayshbeyn LI, Mastalygina EE, Olkhov AA, Podzorova MV. Poly(lactic acid)-based blends: a comprehensive review. Appl Sci, 2023, 13: 5148

[118]

Magazzini L, Grilli S, Fenni SE, Donetti A, Cavallo D, Monticelli O. The blending of poly(glycolic acid) with polycaprolactone and poly(l-lactide): promising combinations. Polymers, 2021, 13: 2780

[119]

Guo J, Cui H, Miao Y, Zhong Y, Zhu J, Li Y, Wang Z, Yao J. Structural evolution of biodegradable polyglycolide fibers under stress-temperature coupled field and its impact on properties. Polymer, 2023, 287: 126417

[120]

Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res, 1993, 27: 183

[121]

Liu B, Wang S, Guo H, Yin H, Song Y, Gong M, Zhang L, Lin X, Wang D. High-strength and rapidly degradable nanocomposite yarns from recycled waste poly(glycolic acid) (PGA). Polymers, 2025, 17: 100

[122]

Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci, 2021, 117: 101395

[123]

Pavon C, Aldas M, Rosa-Ramírez H, López-Martínez J, Arrieta MP. Improvement of PBAT processability and mechanical performance by blending with pine resin derivatives for injection moulding rigid packaging with enhanced hydrophobicity. Polymers, 2020, 12: 2891

[124]

Shahlari M, Lee S. Mechanical and morphological properties of poly(butylene adipate-co-terephthalate) and poly(lactic acid) blended with organically modified silicate layers. Polym Eng Sci, 2012, 52: 1420

[125]

Möller JN. Microplastic pollution in composts, digestates and soils, 2022, Germany. University of Bayreuth1

[126]

Jian J, Xiangbin Z, Xianbo H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res, 2020, 3: 19

[127]

Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): materials, processing, and industrial applications. Prog Polym Sci, 2022, 132: 101579

[128]

Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. A brief review of poly (butylene succinate) (PBS) and its main copolymers: synthesis, blends, composites, biodegradability, and applications. Polymers, 2022, 14: 844

[129]

Kim SJ, Kwak HW, Kwon S, Jang H, Park S-i. Synthesis, characterization and properties of biodegradable poly(butylene sebacate-co-terephthalate). Polymers, 2020, 12: 2389

[130]

Qahtani M, Wu F, Misra M, Gregori S, Mielewski DF, Mohanty AK. Experimental design of sustainable 3d-printed poly(lactic acid)/biobased poly(butylene succinate) blends via fused deposition modeling. ACS Sustain Chem Eng, 2019, 7: 14460

[131]

van der Zee M, Zijlstra M, Kuijpers LJ, Hilhorst M, Molenveld K, Post W. The effect of biodegradable polymer blending on the disintegration rate of PHBV, PBS and PLA in soil. Polym Test, 2024, 140: 108601.

[132]

Sisti L, Totaro G, Marchese P. PBS makes its entrance into the family of biobased plastics. biodegradable and biobased polymers for environmental and biomedical applications. 2016;225.

[133]

Rodriguez-Uribe A, Harder N, Misra M, Mohanty AK. Biocomposites from poly (butylene succinate-co-butylene adipate) biodegradable plastic and hop natural fiber: studies on the effect of compatibilizer on performance of the composites. Composites Part C Open Access, 2023, 12: 100408

[134]

Deroiné M, Pillin I, Le Maguer G, Chauvel M, Grohens Y. Development of new generation fishing gear: a resistant and biodegradable monofilament. Polym Test, 2019, 74: 163.

[135]

Siracusa V, Blanco I. Bio-polyethylene (bio-PE), bio-polypropylene (bio-PP) and bio-poly(ethylene terephthalate) (bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 2020, 12: 1641

[136]

Li J, Lemstra PJ, Ma P. Chapter 7: Can high-performance fibers be(come) bio-based and also biocompostable?. Adv Ind Eng Polym Res, 2022, 5: 117

[137]

Lemstra PJ. Chapter 1: High-performance polyethylene fibers. Adv Ind Eng Polym Res, 2022, 5: 49

[138]

García-Velásquez C, van der Meer Y. Can we improve the environmental benefits of biobased PET production through local biomass value chains? – A life cycle assessment perspective. J Clean Prod, 2022, 380: 135039.

[139]

Burelo M, Hernández-Varela JD, Medina DI, Treviño-Quintanilla CD. Recent developments in bio-based polyethylene: degradation studies, waste management and recycling. Heliyon, 2023, 9: e21374

[140]

Sabde S, Yadav GD, Narayan R. Conversion of waste into wealth in chemical recycling of polymers: hydrolytic depolymerization of polyethylene terephthalate into terephthalic acid and ethylene glycol using phase transfer catalysis. J Clean Prod, 2023, 420: 138312

[141]

Zhang L, Lu C, Dong P, Wang K, Zhang Q. Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion. Polymer, 2019, 180: 121711

[142]

AlSalem F, Louhichi A, Rastogi S. Melt blending of commercial linear polyethylene with low-entangled ultra-high molecular weight polyethylene: from dispersion compatibility to viscoelastic scaling laws. Polymer, 2024, 311: 127563

[143]

Zhong Y, Chen L, Gao J, Guo J, Xing C, Li Y, Wang Z. Structural evolution of high-entanglement ultrahigh molecular weight polyethylene films with reserved shish crystals during the hot stretching process. Macromolecules, 2024, 57: 2176

[144]

Berger NJ, Pfeifer C. Comparing the financial costs and carbon neutrality of polyester fibres produced from 100% bio-based PET, 100% recycled PET, or in combination. Biomass Conv Bioref, 2025, 15: 6251

[145]

Peijs T, Jacobs MJN, Lemstra PJKelly A, Zweben C. 1.09 - High performance polyethylene fibers. Comprehensive composite materials, 2000, Oxford. Pergamon263.

[146]

Goutianos S, Beauson J. The influence of processing temperature on the tensile properties of melt-spun PLA fibres and their self-reinforced composites. Appl Compos Mater, 2023, 30: 1865

[147]

Penning JP, Dijkstra H, Pennings AJ. Preparation and properties of absorbable fibres from l-lactide copolymers. Polymer, 1993, 34: 942

[148]

Leenslag JW, Pennings AJ. High-strength poly(l-lactide) fibres by a dry-spinning/hot-drawing process. Polymer, 1987, 28: 1695

[149]

Smith P, Lemstra PJ. Ultra-high-strength polyethylene filaments by solution spinning/drawing. J Mater Sci, 1980, 15: 505

[150]

Butto M, Maspoch ML, Bernal C. Effect of post-drawing thermal treatment on the mechanical behavior of solid-state drawn poly(lactic acid) (PLA) filaments. Textiles, 2023, 3: 339.

[151]

Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev, 2016, 107: 367

[152]

Zaidi Z, Crosky A. Unidirectional rubber-toughened green composites based on PHBV. Sustainability, 2019, 11: 2411

[153]

Kervran M, Vagner C, Cochez M, Ponçot M, Saeb MR, Vahabi H. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: a systematic review. Polym Degrad Stab, 2022, 201: 109995

[154]

Muthuraj R, Misra M, Mohanty AK. Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci, 2015, 132: 42189.

[155]

Seitz M, Rihm R, Bonten C. Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with regenerated cellulose fibers. Polymers, 2024, 16: 2070

[156]

Peijs TBeaumont PWR, Zweben CH. 1.5 High performance polyethylene fibers. Comprehensive composite materials II, 2018, Oxford. Elsevier86.

[157]

Li Y-F, Hsu C-F, Syu J-Y, Chen F-W, Wu J-H. Experimental investigation on the mechanical characteristics of ultra-high-molecular-weight polyethylene (UHMWPE) based fiber-reinforced concrete. Case Stud Constr Mater, 2024, 21: e03762

[158]

Chen J, Zhu Y, Ni Q, Fu Y, Fu X. Surface modification and characterization of aramid fibers with hybrid coating. Appl Surf Sci, 2014, 321: 103

[159]

Fan Y, Li Z, Wei J. Application of aramid nanofibers in nanocomposites: a brief review. Polymers, 2021, 13: 3071

[160]

Ding J, Chen G, Huang W, Cheng J, Li T, Cheng C, Xu J. Tensile strength statistics and fracture mechanism of ultrahigh molecular weight polyethylene fibers: on the Weibull distribution. ACS Omega, 2024, 9: 12984

[161]

Wu Y, Gao X, Wu J, Zhou T, Nguyen TT, Wang Y. Biodegradable polylactic acid and its composites: characteristics, processing, and sustainable applications in sports. Polymers, 2023, 15: 3096

[162]

Lo JSC, Chen X, Chen S, Miao Y, Daoud WA, Tso CY, Firdous I, Deka BJ, Lin CSK. Fabrication of biodegradable PLA-PHBV medical textiles via electrospinning for healthcare apparel and personal protective equipment. Sustain Chem Pharm, 2024, 39: 101536

[163]

Kopf S, Root A, Heinmaa I, de Aristéia Lima J, Åkesson D, Skrifvars M. Production and characterization of melt-spun poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blend monofilaments. ACS Omega, 2024, 9: 27415

[164]

Aziz S, Colwell J, Heidarian P, Mathel V, Gauthier E, McNally T, Peijs T, Varley RJ, Halley PJ, Vandi L-J. Scalable fabrication of self-reinforced bioplastic composites using short fiber reinforcements. Macromol Mater Eng, 2025, 310: 2500011

[165]

Mai F, Tu W, Bilotti E, Peijs T. Preparation and properties of self-reinforced poly(lactic acid) composites based on oriented tapes. Compos Part A Appl Sci Manuf, 2015, 76: 145

[166]

Gajjar CR, Stallrich JW, Pasquinelli MA, King MW. Process–property relationships for melt-spun poly(lactic acid) yarn. ACS Omega, 2021, 6: 15920

[167]

Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E. Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci, 2003, 90: 1731

[168]

Naeimirad M, Krins B, McLuskie A, Vos M, Gruter G-JM. Physical characterization and biodegradation of fibers produced by melt-spinning of aliphatic polyesters. Sci Rep, 2025, 15: 24543

[169]

Niknejad E, Jafari R, Valipour Motlagh N. Mechanical properties of biodegradable fibers and fibrous mats: a comprehensive review. Molecules, 2025, 30: 3276

[170]

Orellana Barrasa J, Ferrández-Montero A, Ferrari B, Pastor JY. Characterisation and modelling of PLA filaments and evolution with time. Polymers, 2021, 13: 2899

[171]

Jia W, Gong RH, Hogg PJ. Poly (lactic acid) fibre reinforced biodegradable composites. Compos Part B Eng, 2014, 62: 104

[172]

Li J-X, Niu D-Y, Liu B, Xu P-W, Yang W-J, Lemstra PJ, Ma P-M. Improvement on the mechanical performance and resistance towards hydrolysis of poly(glycolic acid) via solid-state drawing. Chin J Polym Sci, 2023, 41: 14.

[173]

Kato S, Ueda T, Aoshima T, Kosaka N, Nitta SKünkel A, Battagliarin G, Winnacker M, Rieger B, Coates G. BioPBS™ (polybutylene succinate). Synthetic biodegradable and biobased polymers: industrial aspects and technical products, 2024, Cham. Springer International Publishing269

[174]

Nadella HP, Spruiell JE, White JL. Drawing and annealing of polypropylene fibers: structural changes and mechanical properties. J Appl Polym Sci, 1978, 22: 3121

[175]

Krmelová V, Gavendová M, Krmela J, Skalková P, Loksik E. Thermal and mechanical characterization of drawn polypropylene fibres. IOP Conf Ser Mater Sci Eng, 2021, 1199: 012029.

[176]

Seguela R, Rietsch F. Tensile drawing behaviour of a linear low-density polyethylene: changes in physical and mechanical properties. Polymer, 1986, 27: 532

[177]

Yousfi M, Castro-Cabrera I, Cayla A, Salaün F, Sotta P, Boyron O, Fernandez-De-Alba C, Parajua-sejil C, Samuel C, Truchot V, Lacrampe M-F. Crystal structure, thermal, rheological and mechanical properties of self-reinforced melt-spun high- and low-density polyethylene blends. Polymer, 2025, 339: 129123

[178]

Kakiage M, Takei S. High-strength and high-toughness melt-spun polyethylene fibers derived from composite structure formation. Macromol Mater Eng, 2020, 305: 2000252

[179]

Hine PJ, Ward IM, Olley RH, Bassett DC. The hot compaction of high modulus melt-spun polyethylene fibres. J Mater Sci, 1993, 28: 316

[180]

Harland WG, Khadr MM, Peters RH. Morphology of cold-drawn high-density polyethylene fibres. Polymer, 1974, 15: 81

[181]

Hahm W-G, Ito H, Kikutani T. Structural evolution of poly(ethylene terephthalate) fibers in high-speed in-line drawing process. Polymer, 2025, 319: 128010

[182]

Tomisawa R, Ikaga T, Kim KH, Ohkoshi Y, Okada K, Masunaga H, Kanaya T, Masuda M, Maeda Y. Effect of draw ratio on fiber structure development of polyethylene terephthalate. Polymer, 2017, 116: 357

[183]

Chen Y, Han L, Zhang H, Dong L. Improvement of the strength and toughness of biodegradable polylactide/silica nanocomposites by uniaxial pre-stretching. Int J Biol Macromol, 2021, 190: 198

[184]

Shiroud Heidari B, Dodda JM, El-Khordagui LK, Focarete ML, Maroti P, Toth L, Pacilio S, El-Habashy SE, Boateng J, Catanzano O, Sahai N, Mou L, Zheng M. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater, 2024, 184: 1

[185]

Cacciotti I, Calderone M, Bianco A. Tailoring the properties of electrospun PHBV mats: co-solution blending and selective removal of PEO. Eur Polym J, 2013, 49: 3210

[186]

Uddin MK, Novembre L, Greco A, Sannino A. Polyhydroxyalkanoates, a prospective solution in the textile industry - a review. Polym Degrad Stab, 2024, 219: 110619

[187]

Perret E, Reifler FA, Gooneie A, Chen K, Selli F, Hufenus R. Structural response of melt-spun poly(3-hydroxybutyrate) fibers to stress and temperature. Polymer, 2020, 197: 122503

[188]

Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer, 1982, 23: 1587

[189]

Grizzo A, dos Santos DM, da Costa VPV, Lopes RG, Inada NM, Correa DS, Campana-Filho SP. Multifunctional bilayer membranes composed of poly(lactic acid), beta-chitin whiskers and silver nanoparticles for wound dressing applications. Int J Biol Macromol, 2023, 251: 126314

[190]

Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience, 2024, 27: 111512

[191]

Zhao J, Liu X, Pu X, Shen Z, Xu W, Yang J. Preparation method and application of porous poly(lactic acid) membranes: a review. Polymers, 2024, 16: 1846

[192]

Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-based and biodegradable polymeric materials for a circular economy. Polymers, 2024, 16: 3015

[193]

Platnieks O, Gaidukovs S, Kumar Thakur V, Barkane A, Beluns S. Bio-based poly (butylene succinate): recent progress, challenges and future opportunities. Eur Polym J, 2021, 161: 110855

[194]

Karbowniczek JE, Kaniuk Ł, Berniak K, Gruszczyński A, Stachewicz U. Enhanced cells anchoring to electrospun hybrid scaffolds with phbv and ha particles for bone tissue regeneration. Front Bioeng Biotechnol, 2021, 9: 632029

[195]

Kaniuk Ł, Krysiak ZJ, Metwally S, Stachewicz U. Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds. Mater Sci Eng, C, 2020, 110: 110668

[196]

Kaniuk Ł, Berniak K, Lichawska-Cieślar A, Jura J, Karbowniczek JE, Stachewicz U. Accelerated wound closure rate by hyaluronic acid release from coated PHBV electrospun fiber scaffolds. J Drug Deliv Sci Technol, 2022, 77: 103855

[197]

Kim J-S, Shin S-I, Herr Y, Park J-B, Kwon Y-H, Chung J-H. Tissue reactions to suture materials in the oral mucosa of beagle dogs. J Periodontal Implant Sci, 2011, 41: 185

[198]

Somord K, Suwantong O, Tawichai N, Peijs T, Soykeabkaew N. Self-reinforced poly(lactic acid) nanocomposites of high toughness. Polymer, 2016, 103: 347

[199]

Zhang X, Geven MA, Grijpma DW, Gautrot JE, Peijs T. Polymer-polymer composites for the design of strong and tough degradable biomaterials. Mater Today Commun, 2016, 8: 53

[200]

Zhang X, Geven MA, Grijpma DW, Peijs T, Gautrot JE. Tunable and processable shape memory composites based on degradable polymers. Polymer, 2017, 122: 323

[201]

Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, Del Prado‑Audelo ML, Leyva‑Gómez G, Gürer ES, Sharifi‑Rad J. Recent advances in modified poly (lactic acid) as tissue engineering materials. J Biol Eng, 2023, 17: 21

[202]

Zhou J-f, Wang Y-g, Cheng L, Wu Z, Sun X-d, Peng J. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regen Res, 2016, 11: 1644

[203]

Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev, 2016, 107: 163

[204]

Ranakoti L, Gangil B, Bhandari P, Singh T, Sharma S, Singh J, Singh S. Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: research developments, and prospective applications. Molecules, 2023, 28: 485

[205]

DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. Engineered Regen, 2020, 1: 76.

[206]

Moya-Lopez C, González-Fuentes J, Bravo I, Chapron D, Bourson P, Alonso-Moreno C, Hermida-Merino D. Polylactide perspectives in biomedicine: from novel synthesis to the application performance. Pharmaceutics, 2022, 14: 1673

[207]

Liu S, Qin S, He M, Zhou D, Qin Q, Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos Part B Eng, 2020, 199: 108238

[208]

Takayama T, Daigaku Y, Ito H, Takamori H. Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. J Mech Sci Technol, 2014, 28: 4151.

[209]

Yeo JCC, Muiruri JK, Fei X, Wang T, Zhang X, Xiao Y, Thitsartarn W, Tanoto H, He C, Li Z. Innovative biomaterials for food packaging: unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. Biomater Adv, 2024, 163: 213929

[210]

Bonartsev AP, Bonartseva GA, Reshetov IV, Kirpichnikov MP, Shaitan KV. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly(3-hydroxybutyrate). Acta Naturae, 2019, 11: 4

[211]

Colwell J, Halley P, Varley R, Heidarian P, McNally T, Peijs T, Vandi L. Self-reinforced biodegradable thermoplastic composites. Adv Compos Hybrid Mater, 2024, 7: 128

[212]

Cheng M, Qin Z, Hu S, Dong S, Ren Z, Yu H. Achieving long-term sustained drug delivery for electrospun biopolyester nanofibrous membranes by introducing cellulose nanocrystals. ACS Biomater Sci Eng, 2017, 3: 1666

[213]

Chang HC, Sultana N. PLA/PHBV electrospun membrane: fabrication, coating with conductive PEDOT:PSS and antibacterial activity of drug loaded membrane. Cogent Eng, 2017, 4: 1322479.

[214]

Kenar H, Kose GT, Hasirci V. Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. J Mater Sci Mater Med, 2010, 21: 989

[215]

Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent advances in the regenerative approaches for traumatic spinal cord injury: materials perspective. ACS Biomater Sci Eng, 2020, 6: 6490

[216]

Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials, 2010, 31: 1596

[217]

Prabhakaran MP, Vatankhah E, Ramakrishna S. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng, 2013, 110: 2775

[218]

Özgün Öztürk B, Balci A, Alemdar S, Bayramgil NP. Recycling of poly(l-lactic acid) based 3D printed objects using Sn, Ti and triazabicyclodecene-based catalysts in film or microfiber form. Polymer, 2024, 315: 127810.

[219]

McGuire TM, Buchard A, Williams C. Chemical recycling of commercial poly(l-lactic acid) to l-lactide using a high-performance Sn(II)/alcohol catalyst system. J Am Chem Soc, 2023, 145: 19840

[220]

Li Y, Wang S, Qian S, Liu Z, Weng Y, Zhang Y. Depolymerization and re/upcycling of biodegradable PLA plastics. ACS Omega, 2024, 9: 13509

[221]

Ali W, Ali H, Gillani S, Zinck P, Souissi S. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environ Chem Lett, 2023, 21: 1761

[222]

Agbakoba VC, Webb N, Jegede E, Phillips R, Hlangothi SP, John MJ. Mechanical recycling of waste PLA generated from 3D printing activities: filament production and thermomechanical analysis. Macromol Mater Eng, 2024, 309: 2300276

[223]

Plavec R, Hlaváčiková S, Omaníková L, Feranc J, Vanovčanová Z, Tomanová K, Bočkaj J, Kruželák J, Medlenová E, Gálisová I, Danišová L, Přikryl R, Figalla S, Melčová V, Alexy P. Recycling possibilities of bioplastics based on PLA/PHB blends. Polym Test, 2020, 92: 106880

[224]

Borah AR, Hazarika P, Duarah R, Goswami R, Hazarika S. Biodegradable electrospun membranes for sustainable industrial applications. ACS Omega, 2024, 9: 11129

[225]

Li F, Yu HY, Li Y, Hussain Abdalkarim SY, Zhu J, Zhou Y. Soft-rigid” synergistic reinforcement of PHBV composites with functionalized cellulose nanocrystals and amorphous recycled polycarbonate. Compos Part B Eng, 2021, 206: 108542

[226]

Yang Y, Zhang M, Ju Z, Tam PY, Hua T, Younas MW, Kamrul H, Hu H. Poly(lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications. Text Res J, 2021, 91: 1641

[227]

Jóźwik-Pruska J, Wrześniewska-Tosik K, Kowalewski T, Wietecha J, Pałczyńska M, Szalczyńska M. Biodegradability of PLA-based nonwoven fabrics with poultry feathers. Polymers, 2025, 17: 957

[228]

Omaníková L, Bočkaj J, Černák M, Plavec R, Feranc J, Jurkovič P. Influence of composition and plasma power on properties of film from biodegradable polymer blends. Polymers, 2020, 12: 1592

[229]

Baran EH, Erbil HY. Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids Interfaces, 2019, 3: 43

[230]

Ferreira PS, Ribeiro SM, Pontes R, Nunes J. Production methods and applications of bioactive polylactic acid: a review. Environ Chem Lett, 2024, 22: 1831

[231]

Hendrick E, Frey M. Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of pla-b-peg co-polymers. J Eng Fibers Fabr, 2014, 9: 153

[232]

de Matos Costa AR, Crocitti A, de Hecker Carvalho L, Carroccio SC, Cerruti P, Santagata G. Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Polymers, 2020, 12: 2317

[233]

Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, AbdulGhani A. Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution?. Curr Res Green Sustain Chem, 2022, 5: 100273

[234]

Nizamuddin S, Baloch AJ, Chen C, Arif M, Mubarak NM. Bio-based plastics, biodegradable plastics, and compostable plastics: biodegradation mechanism, biodegradability standards and environmental stratagem. Int Biodeterior Biodegrad, 2024, 195: 105887

[235]

da Pereira Silva JS, da Farias Silva JM, Soares BG, Livi S. Fully biodegradable composites based on poly(butylene adipate-co-terephthalate)/peach palm trees fiber. Compos Part B Eng, 2017, 129: 117.

[236]

Itabana BE, Mohanty AK, Dick P, Sain M, Bali A, Tiessen M, Lim L-T, Misra M. Poly (butylene adipate-co-terephthalate) (pbat) – based biocomposites: a comprehensive review. Macromol Mater Eng, 2024, 309: 2400179

[237]

Dissanayake PD, Withana PA, Sang MK, Cho Y, Park J, Oh DX, Chang SX, Lin CSK, Bank MS, Hwang SY, Ok YS. Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems. Soil Use Manage, 2024, 40: e13055.

[238]

Jia X, Wen Q, Sun Y, Chen Y, Gao D, Ru Y, Chen N. Preparation and performance of pbat/pla/caco3 composites via solid-state shear milling technology. Polymers, 2024, 16: 2942

[239]

Fijoł N, Aguilar-Sánchez A, Ruiz-Caldas M-X, Redlinger-Pohn J, Mautner A, Mathew AP. 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water. Chem Eng J, 2023, 457: 141153.

[240]

Chen J, Yu B, Zhu J, Gao Y, Deng W, Chen R, Wang H-L. Electrospinning of biodegradable, monolithic membrane with distinct bimodal micron-sized fibers and nanofibers for high efficiency pms removal. ACS Appl Mater Interfaces, 2023, 15: 35507

[241]

Verma D, Nichakornpong N, Kraiwitwattana U, Okhawilai M, Kasemsiri P, Potiyaraj P, Rangkupan R. High performance filtration membranes from electrospun poly (3-hydroxybutyrate)-based fiber membranes for fine particulate protection. Environ Res, 2023, 231: 116144

[242]

Deng Y, Lu T, Cui J, Keshari Samal S, Xiong R, Huang C. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: a review. Sep Purif Technol, 2021, 277: 119623

[243]

Zhang J, Gong S, Wang C, Jeong D-Y, Wang ZL, Ren K. Biodegradable electrospun poly(lactic acid) nanofibers for effective PM 2.5 removal. Macromol Mater Eng, 2019, 304: 1900259

[244]

Milanesi G, Vigani B, Rossi S, Sandri G, Mele E. Chitosan-coated poly(lactic acid) nanofibres loaded with essential oils for wound healing. Polymers, 2021, 13: 2582

[245]

Egan J, Salmon S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl Sci, 2021, 4: 22.

[246]

Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci, 2010, 35: 338

[247]

Yang Q, Shen X, Tan Z. Investigations of the preparation technology for polyglycolic acid fiber with perfect mechanical performance. J Appl Polym Sci, 2007, 105: 3444

[248]

Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-based biopolymer processing as a route toward sustainability. Adv Mater, 2022, 34: 2105196

[249]

Samir A, Ashour FH, Hakim AAA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater Degrad, 2022, 6: 68

[250]

Mhaddolkar N, Astrup TF, Tischberger-Aldrian A, Pomberger R, Vollprecht D. Challenges and opportunities in managing biodegradable plastic waste: a review. Waste Manag Res, 2025, 43: 911

[251]

The multifaceted challenges of bioplastics. Nat Rev Bioeng. 2024;2:279

[252]

Akinsemolu AA, Idowu AM, Onyeaka HN. Recycling technologies for biopolymers: current challenges and future directions. Polymers, 2024, 16: 2770

[253]

Schick S, Heindel J, Groten R, Seide GH. Overcoming challenges in the commercialization of biopolymers: from research to applications-a review. Polymers, 2024, 16: 3498

[254]

Börner T, Zinn M. Key challenges in the advancement and industrialization of biobased and biodegradable plastics: a value chain overarching perspective. Front Bioeng Biotechnol, 2024, 12: 1406278

[255]

de Sousa FDB. Consumer awareness of plastic: an overview of different research areas. Circ Econ Sustain, 2023, 3: 2083.

[256]

Meeks D, Hottle T, Bilec MM, Landis AE. Compostable biopolymer use in the real world: stakeholder interviews to better understand the motivations and realities of use and disposal in the US. Resour Conserv Recycl, 2015, 105: 134.

[257]

Beyreuther R, Vogel R. Spinnability of polymer melts–a complex problem in basic research. Int Polym Process, 1996, 11: 154

[258]

Wojasiński M, Ciach T. Shear and elongational rheometry for determination of spinnability window of polymer solutions in solution blow spinning. J Appl Polym Sci, 2022, 139: e52851.

[259]

Iles A, Martin AN. Expanding bioplastics production: sustainable business innovation in the chemical industry. J Clean Prod, 2013, 45: 38

[260]

Waste levy areas and levy rates. Australia: EPA NSW Government; 2025.

[261]

Springle N, Li B, Soma T, Shulman T. The complex role of single-use compostable bioplastic food packaging and foodservice ware in a circular economy: findings from a social innovation lab. Sustain Prod Consumpt, 2022, 33: 664.

[262]

Huang S, Dong Q, Che S, Li R, Tang KHD. Bioplastics and biodegradable plastics: a review of recent advances, feasibility and cleaner production. Sci Total Environ, 2025, 969: 178911

[263]

Dias JC, Ribeiro C, Sencadas V, Botelho G, Ribelles JLG, Lanceros-Mendez S. Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polym Test, 2012, 31: 770

[264]

Pantani R, Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab, 2013, 98: 1089

[265]

Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: a review. Eur Polym J, 2011, 47: 254

[266]

Arroyo-Esquivel L, Jiménez VM, Vásquez F, Esquivel P. Plasticizers improved flexibility, homogeneity, and color stability in pitahaya (Hylocereus sp.) peel-based biopolymer films aimed at food packaging. Ind Crops Prod, 2025, 227: 120757

[267]

Gigante V, Canesi I, Cinelli P, Coltelli MB, Lazzeri A. Rubber toughening of polylactic acid (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): mechanical properties, fracture mechanics and analysis of ductile-to-brittle behavior while varying temperature and test speed. Eur Polym J, 2019, 115: 125

[268]

Fekete I, Ronkay F, Lendvai L. Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: the effect of composition and infill pattern. Polym Test, 2021, 99: 107205

[269]

Fredricks JL, Jimenez AM, Grandgeorge P, Meidl R, Law E, Fan J, Roumeli E. Hierarchical biopolymer-based materials and composites. J Polym Sci, 2023, 61: 2585

[270]

Afshar SV, Boldrin A, Astrup TF, Daugaard AE, Hartmann NB. Degradation of biodegradable plastics in waste management systems and the open environment: a critical review. J Clean Prod, 2024, 434: 140000

[271]

Quecholac-Piña X, Hernández-Berriel MdC, Mañón-Salas MdC, Espinosa-Valdemar RM, Vázquez-Morillas A. Degradation of plastics under anaerobic conditions: a short review. Polymers, 2020, 12: 109

[272]

Filho WL, Salvia AL, Bonoli A, Saari UA, Voronova V, Klõga M, Kumbhar SS, Olszewski K, De Quevedo DM, Barbir J. An assessment of attitudes towards plastics and bioplastics in Europe. Sci Total Environ, 2021, 755: 142732

[273]

Boucher JF, Damien. Primary microplastics in the oceans: a global evaluation of sources. In: International Union for Conservation of Nature and Natural Resources, Switzerland; 2017.

[274]

Da Silva BA, Valério A, Cesca K, Hotza D, Gómez González SY. Electrospun polycaprolactone scaffolds using an ionic liquid as alternative solvent: morphometric, mechanical and biological properties. ChemistrySelect, 2020, 5: 14050.

[275]

Frąckowiak P, Jędrzejczak E, Kaspryszyn F, Jesionowski T, Wysokowski M. Revolutionizing electrospinning: sustainable solutions through deep eutectic solvents in biopolymer processing. J Appl Polym Sci, 2024, 141: e55864.

[276]

Basar AO, Prieto C, Cabedo L, Lagaron JM. Enhancing the mechanical properties of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats using deep eutectic solvents. ACS Omega, 2025, 10: 12936

Funding

Australian Research Council(DP220100845)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/