Multidimensional Conformable IL-PANSion with Multisensory Capabilities for Soft Device Applications

Shiju Yang , Haoxiang Jin , Yiyao Zhang , Shangkui Yang , Junlong Tan , Lixue Yang , Xiaofei Song , Rongjie Kang , Shaoli Fang , Ray H. Baughman , Jiuke Mu

Advanced Fiber Materials ›› : 1 -16.

PDF
Advanced Fiber Materials ›› :1 -16. DOI: 10.1007/s42765-025-00645-3
Research Article
research-article

Multidimensional Conformable IL-PANSion with Multisensory Capabilities for Soft Device Applications

Author information +
History +
PDF

Abstract

Equipping advanced intelligent machines with human-like nervous systems requires new sensing materials capable of conformal integration into complex multidimensional structures. Here, we introduce an ionic liquid-enhanced polyacrylonitrile/AgNO3 formulation (IL-PANSion)—designed to be fabricated in diverse forms, including air-spun fibers, multi-material 2D printed layers, and 3D injection-molded networks. By leveraging room-temperature air spinning, IL-PANSion fibers achieve high tensile strain (up to 300 times that of conventional polyacrylonitrile fibers) and maintain over 650% stretchability for extended periods in open air. The material’s robust supramolecular network exhibits self-healing behavior, rapidly restoring mechanical integrity and conductivity after damage. In addition to mechanical strain sensing (gauge factor of 4.41), IL-PANSion detects temperature changes (ST of 1.75 °C−1), near-infrared radiation, and organic solvents, all within a single platform. By integrating IL-PANSion-based sensors into soft robotic systems, we demonstrate autonomous path-planning capabilities and the accurate identification of organic gases. Furthermore, the material can conformally fill or coat 3D structures to form hollow tubular sensors, enabling real-time monitoring of internal fluid flow and pressure—an important step toward biomimetic “organ-level” sensing. These findings showcase IL-PANSion’s versatile processing, combined with multimodal, self-healing sensing properties, making it a promising candidate for next-generation wearable health monitors, soft robotic skins, and smart infrastructures requiring integrated volumetric sensing.

Graphical Abstract

Keywords

Multimodal sensing / Multidimensional conformable sensors / Ionic liquid-enhanced polymers / Self-healing materials / Soft robotic sensing

Cite this article

Download citation ▾
Shiju Yang, Haoxiang Jin, Yiyao Zhang, Shangkui Yang, Junlong Tan, Lixue Yang, Xiaofei Song, Rongjie Kang, Shaoli Fang, Ray H. Baughman, Jiuke Mu. Multidimensional Conformable IL-PANSion with Multisensory Capabilities for Soft Device Applications. Advanced Fiber Materials 1-16 DOI:10.1007/s42765-025-00645-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thuruthel TG, Shih B, Laschi C, Tolley MT. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci Robot, 2019, 4eaav1488

[2]

Wang P, Xie Z, Xin W, Tang Z, Yang X, Mohanakrishnan M, Guo S, Laschi C. Sensing expectation enables simultaneous proprioception and contact detection in an intelligent soft continuum robot. Nat Commun, 2024, 15: 9978

[3]

Xian S, Xu Y, Li Y, Wu Z, Xie X, Wu Z, Yang X, Zhong Y. Flexible triboelectric sensor based on catalyst‐diffusion self‐encapsulated conductive liquid‐metal‐silicone ink for somatosensory soft robotic system. Adv Funct Mater, 2025, 352412293

[4]

Ma K, Ma L, Li C, Zhu R, Yang J, Liu S, Tao X. Textile-based mechanoreceptor array with tunable pressure thresholds for mutli-dimensional detection in healthcare monitoring. Adv Fiber Mater, 2025, 7: 1590

[5]

Yuan M, Luo F, Wang Z, Yu J, Li H, Chen X. Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring. Chem Eng J, 2023, 453139898

[6]

Yang Y, Liu Y, Yin R. Fiber/yarn and textile-based piezoresistive pressure sensors. Adv Fiber Mater, 2025, 7: 34

[7]

Duan S, Lin Y, Shi Q, Wei X, Zhu D, Hong J, Xiang S, Yuan W, Shen G, Wu J. Highly sensitive and mechanically stable MXene textile sensors for adaptive smart data glove embedded with near-sensor edge intelligence. Adv Fiber Mater, 2024, 6: 1541

[8]

Hou C, Gao H, Yang X, Xue G, Zuo X, Li Y, Li D, Lu B, Ren H, Liu H, Sun L. A piezoresistive-based 3-axial MEMS tactile sensor and integrated surgical forceps for gastrointestinal endoscopic minimally invasive surgery. Microsyst Nanoeng, 2024, 10: 141.

[9]

Thuau D, Abbas M, Wantz G, Hirsch L, Dufour I, Ayela C. Piezoelectric polymer gated OFET: cutting-edge electro-mechanical transducer for organic MEMS-based sensors. Sci Rep, 2016, 6: 38672

[10]

Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016, 351: 1071

[11]

Lim C, Hong YJ, Jung J, Shin Y, Sunwoo S-H, Baik S, Park OK, Choi SH, Hyeon T, Kim JH, Lee S, Kim D-H. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci Adv, 2021, 7eabd3716

[12]

Li K, Araki T, Utaki R, Tokumoto Y, Sun M, Yasui S, Kurihira N, Kasai Y, Suzuki D, Marteijn R, den Toonder JMJ, Sekitani T, Kawano Y. Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping. Sci Adv, 2022, 8eabm4349

[13]

Liu Z, Hu X, Bo R, Yang Y, Cheng X, Pang W, Liu Q, Wang Y, Wang S, Xu S, Shen Z, Zhang Y. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science, 2024, 3846699987

[14]

Shirzaei Sani E, Xu C, Wang C, Song Y, Min J, Tu J, Solomon SA, Li J, Banks JL, Armstrong DG, Gao W. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci Adv, 2023, 9eadf7388

[15]

Yang Q, Wei T, Yin RT, Wu M, Xu Y, Koo J, Choi YS, Xie Z, Chen SW, Kandela I, Yao S, Deng Y, Avila R, Liu T-L, Bai W, Yang Y, Han M, Zhang Q, Haney CR, Benjamin Lee K, Aras K, Wang T, Seo M-H, Luan H, Lee SM, Brikha A, Ghoreishi-Haack N, Tran L, Stepien I, Aird F, Waters EA, Yu X, Banks A, Trachiotis GD, Torkelson JM, Huang Y, Kozorovitskiy Y, Efimov IR, Rogers JA. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater, 2021, 201559

[16]

Zhong D, Wu C, Jiang Y, Yuan Y, Kim M-g, Nishio Y, Shih C-C, Wang W, Lai J-C, Ji X, Gao TZ, Wang Y-X, Xu C, Zheng Y, Yu Z, Gong H, Matsuhisa N, Zhao C, Lei Y, Liu D, Zhang S, Ochiai Y, Liu S, Wei S, Tok JBH, Bao Z. High-speed and large-scale intrinsically stretchable integrated circuits. Nature, 2024, 627: 313

[17]

Ko E-H, Kim H-J, Lee S-M, Kim T-W, Kim H-K. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates. Sci Rep, 2017, 7: 46739.

[18]

Liu N, Chortos A, Lei T, Jin L, Kim TR, Bae W-G, Zhu C, Wang S, Pfattner R, Chen X, Sinclair R, Bao Z. Ultratransparent and stretchable graphene electrodes. Sci Adv, 2017, 3e1700159

[19]

Lv J, Thangavel G, Li Y, Xiong J, Gao D, Ciou J, Tan MWM, Aziz I, Chen S, Chen J, Zhou X, Poh WC, Lee PS. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci Adv, 2021, 7eabg8433

[20]

Xie R, Li Q, Teng L, Cao Z, Han F, Tian Q, Sun J, Zhao Y, Yu M, Qi D, Guo P, Li G, Huo F, Liu Z. Strenuous exercise-tolerance stretchable dry electrodes for continuous multi-channel electrophysiological monitoring. NPJ Flex Electron, 2022, 675

[21]

Lin H, Wang H, Yang Y, Zhang Y, Li L, Zhao Y, Zhang W. Smart fabrics with liquid metal reinforced PU/CNT/MXene multilayer structures for constructing multifunctional sensors and wearable electronics. J Mater Chem A, 2024, 12: 30872

[22]

Zhang S, Chhetry A, Zahed MA, Sharma S, Park C, Yoon S, Park JY. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. NPJ Flex Electron, 2022, 611

[23]

Zhao R, Zhao Z, Song S, Wang Y. Multifunctional conductive double-network hydrogel sensors for multiscale motion detection and temperature monitoring. ACS Appl Mater Interfaces, 2023, 15: 59854

[24]

Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic liquids in metal, photo-, electro-, and (bio) catalysis. Chem Rev, 2024, 124: 5227

[25]

Song Z, Chen J, Cheng J, Chen G, Qi Z. Computer-aided molecular design of ionic liquids as advanced process media: a review from fundamentals to applications. Chem Rev, 2024, 124: 248

[26]

Zhang S, Hao A, Liu Z, Park JG, Liang R. A highly stretchable polyacrylonitrile elastomer with nanoreservoirs of lubricant using cyano-silver complexes. Nano Lett, 2019, 19: 3871

[27]

Pastoriza-Santos I, Liz-Marzán LM. N,N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater, 2009, 19: 679

[28]

Gholami M, Tajabadi F, Taghavinia N, Moshfegh A. Chemically-stable flexible transparent electrode: gold-electrodeposited on embedded silver nanowires. Sci Rep, 2023, 13: 17511

[29]

Xu D, Meng X, Liu S, Poisson J, Vana P, Zhang K. Dehydration regulates structural reorganization of dynamic hydrogels. Nat Commun, 2024, 156886

Funding

National Natural Science Foundation of China(52175026)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/