Grain-Growth-Inhibited Mullite Fiber Sponges with Superior Thermal Insulation and Sound Absorption Properties

Jiaxin Li , Yaling Zhai , Xiaolong Su , Zhenyan Lu , Jian Zhao , Guichao Tian , Chao Jia , Meifang Zhu

Advanced Fiber Materials ›› : 1 -11.

PDF
Advanced Fiber Materials ›› :1 -11. DOI: 10.1007/s42765-025-00640-8
Research Article
research-article

Grain-Growth-Inhibited Mullite Fiber Sponges with Superior Thermal Insulation and Sound Absorption Properties

Author information +
History +
PDF

Abstract

Mullite fiber is one of the most outstanding oxide ceramic fibers for maintaining high-temperature performance while retaining flexibility. However, the rapid grain growth within mullite fibers inevitably compromises their flexibility, making the suppression of grain growth a significant challenge. Here, we develop high-performance mullite fibers with excellent flexibility at 1500 °C by optimizing the precursor-to-polymer molar ratio via solution blow spinning. Proper ratio control reduces excessive polymer content, minimizes pore defects, and, more importantly, suppresses grain growth during high-temperature treatment, thereby enhancing thermal stability and preserving fiber flexibility. The mullite fiber sponges exhibit excellent compressive resilience, high-temperature thermal insulation, and sound absorption properties. The sponges withstand 1000 compression-recovery cycles, achieve an ultralow thermal conductivity of 0.028 W m−1 K−1, and demonstrate a sound reduction coefficient of up to 0.82. This study highlights the optimization of precursor-to-polymer ratios as a promising strategy to enhance mullite fiber properties, providing valuable insights for efficiently producing high-performance ceramic fibers and potentially extending to the fabrication of other ceramic fiber materials.

Keywords

Ceramic sponges / Mullite fibers / Solution blow spinning / Thermal insulation / Sound absorption

Cite this article

Download citation ▾
Jiaxin Li, Yaling Zhai, Xiaolong Su, Zhenyan Lu, Jian Zhao, Guichao Tian, Chao Jia, Meifang Zhu. Grain-Growth-Inhibited Mullite Fiber Sponges with Superior Thermal Insulation and Sound Absorption Properties. Advanced Fiber Materials 1-11 DOI:10.1007/s42765-025-00640-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang K, Zhang T, Wang T, Xu C, Ye F, Liao Z. Microencapsulation of high temperature metallic phase change materials with SiCN shell. Chem Eng J, 2022, 436: 135054

[2]

Liu Y, Liu Y, Choi WC, Chae S, Lee J, Kim B-S, Park M, Kim HY. Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators. J Mater Chem A, 2017, 5: 2664

[3]

Mei H, Zhao X, Gui X, Lu D, Han D, Xiao S, Cheng L. SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding. Ceram Int, 2019, 45: 17144

[4]

Zhan HZ, Wu JM, Zhang JC, Li QQ, Fu SX, Chen J, Zhao JH, Ji YM, Wang XP, Deng K, Ji KJ. Biomimetic microstructure with anti-slip and anti-adhesion for efficient handling of brittle material surfaces in high-temperature environments. Small, 2024, 21: 2408236

[5]

Deevi SC. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog Mater Sci, 2021, 118: 100769

[6]

Li JX, Zhao J, Xu Z, Zhai YL, Su XL, Luo DF, Jia C, Zhu MF. High-temperature-resistant dual-scale ceramic nanofiber films toward improved air filtration. ACS Appl Mater Interfaces, 2024, 16: 60608

[7]

Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 2014, 345: 1322

[8]

Chabi S, Rocha VG, García-Tuñón E, Ferraro C, Saiz E, Xia YD, Zhu YQ. Ultralight, strong, three-dimensional SiC structures. ACS Nano, 2016, 10: 1871

[9]

Su L, Wang HJ, Niu M, Fan XY, Ma MB, Shi ZQ, Guo SW. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano, 2018, 12: 3103

[10]

Wang XQ, Doug L, Li ZL, Yang L, Yu JY, Ding B. Flexible hierarchical ZrO2 nanoparticle-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate. ACS Appl Mater Interfaces, 2016, 8: 34668

[11]

Wang Y, Li J, Sun JY, Wang YB, Zhao X. Electrospun flexible self-standing Cu-Al2O3 fibrous membranes as Fenton catalysts for bisphenol A degradation. J Mater Chem A, 2017, 5: 19151

[12]

Si Y, Wang XQ, Dou LY, Yu JY, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv, 2018, 4: eaas8925

[13]

Wang HL, Lin S, Yang S, Yang XD, Song JN, Wang D, Wang HY, Liu ZL, Li B, Fang MH, Wang N, Wu H. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small, 2018, 14: 1800258

[14]

Wang HL, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao CS, Liu ZL, Fang MH, Ou G, Gao HJ, Li XY, Wu H. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci Adv, 2017, 3: e1603170

[15]

Jia C, Li L, Liu Y, Fang B, Ding H, Song JN, Liu YB, Xiang KJ, Lin S, Li ZW, Si WJ, Li B, Sheng X, Wang DZ, Wei XD, Wu H. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat Commun, 2020, 11: 3732

[16]

Jia C, Xu Z, Luo DF, Xiang HX, Zhu MF. Flexible ceramic fibers: recent development in preparation and application. Adv Fiber Mater, 2022, 4: 573

[17]

Tepekiran BN, Calisir MD, Polat Y, Akgul Y, Kilic A. Centrifugally spun silica (SiO2) nanofibers for high-temperature air filtration. Aerosol Sci Technol, 2019, 53: 921

[18]

Akia M, Capitanachi D, Martinez M, Hernandez C, de Santiago H, Mao YB, Lozano K. Development and optimization of alumina fine fibers utilizing a centrifugal spinning process. Microporous Mesoporous Mater, 2018, 262: 175

[19]

Calisir MD, Kilic A. A comparative study on SiO2 nanofiber production via two novel non-electrospinning methods: centrifugal spinning vs solution blowing. Mater Lett, 2020, 258: 126751

[20]

Jia C, Li L, Song J, Li Z, Wu H. Mass production of ultrafine fibers by a versatile solution blow spinning method. Acc Mater Res, 2021, 2: 432

[21]

Jia C, Liu YB, Li L, Song JN, Wang HY, Liu ZL, Li ZW, Li B, Fang MH, Wu H. A foldable all-ceramic air filter paper with high efficiency and high-temperature resistance. Nano Lett, 2020, 20: 4993

[22]

Zhu JX, Zhu RJ, Hu YW, Wang ZM. Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration. Sep Purif Technol, 2023, 305: 12245

[23]

Wu J, Lin H, Li JB, Zhan XB, Li JF. Synthesis and characterization of electrospun mullite nanofibers. Adv Eng Mater, 2010, 12: 71

[24]

Xu Z, Liu HL, Wu F, Cheng LD, Yu JY, Liu YT, Ding B. Inhibited grain growth through phase transition modulation enables excellent mechanical properties in oxide ceramic nanofibers up to 1700°C. Adv Mater, 2023, 35: 2305336

[25]

Xu Z, Liu YM, Xin Q, Dai J, Yu JY, Cheng LD, Liu YT, Ding B. Ceramic meta-aerogel with thermal superinsulation up to 1700°C constructed by self-crosslinked nanofibrous network via reaction electrospinning. Adv Mater, 2024, 36: 2401299

[26]

Liu C, Liao YL, Jiao WL, Zhang XH, Wang N, Yu JY, Liu YT, Ding B. High toughness combined with high strength in oxide ceramic nanofibers. Adv Mater, 2023, 35: 2304401

[27]

Xu X, Zhang QQ, Hao ML, Hu Y, Lin ZY, Peng LL, Wang T, Ren XX, Wang C, Zhao ZP, Wan CZ, Fei HL, Wang L, Zhu J, Sun HT, Chen WL, Du T, Deng BW, Cheng GJ, Shakir I, Dames C, Fisher TS, Zhang X, Li H, Huang Y, Duan XF. Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363: 723

[28]

Zhang XX, Wang F, Dou LY, Cheng XT, Si Y, Yu JY, Ding B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300°C. ACS Nano, 2020, 14: 15616

[29]

Zhang XX, Cheng XT, Si Y, Yu JY, Ding B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano, 2022, 16: 5487

[30]

Guo PF, Su L, Peng K, Lu D, Xu L, Li MZ, Wang HJ. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano, 2022, 16: 6625

[31]

Zhan HJ, Wu KJ, Hu YL, Liu JW, Li H, Guo X, Xu J, Yang Y, Yu ZL, Gao HL, Luo XS, Chen JF, Ni Y, Yu SH. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation. Chem, 2019, 5: 1871

[32]

Zhang QQ, Lin D, Deng BW, Xu X, Nian Q, Jin SY, Leedy KD, Li H, Cheng GJ. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv Mater, 2017, 29: 1605506

[33]

Li T, Song JW, Zhao XP, Yang Z, Pastel G, Xu SM, Jia C, Dai JQ, Chen CJ, Gong A, Jiang F, Yao YG, Fan TZ, Yang B, Wågberg L, Yang RG, Hu LB. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci Adv, 2018, 4: eaar3724

[34]

Li L, Jia C, Liu Y, Fang B, Zhu WQ, Li XY, Schaefer LA, Li ZW, Zhang FS, Feng XN, Hussain N, Xi XQ, Wang D, Lin YH, Wei XD, Wu H. Nanograin-glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater Today, 2022, 54: 72

[35]

Berardi U, Iannace G. Predicting the sound absorption of natural materials: best-fit inverse laws for the acoustic impedance and the propagation constant. Appl Acoust, 2017, 115: 131

[36]

Zong DD, Bai WY, Geng M, Yin X, Yu JY, Zhang SC, Ding B. Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano, 2022, 16: 3740

[37]

Nine MJ, Ayub M, Zander AC, Tran DNH, Cazzolato BS, Losic D. Graphene oxide-based lamella network for enhanced sound absorption. Adv Funct Mater, 2017, 27: 1703820

[38]

Wang JZ, Ao QB, Ma J, Kang XT, Wu C, Tang HP, Song WD. Sound absorption performance of porous metal fiber materials with different structures. Appl Acoust, 2019, 145: 431

[39]

Sung G, Kim JH. Effect of high molecular weight isocyanate contents on manufacturing polyurethane foams for improved sound absorption coefficient. Korean J Chem Eng, 2017, 34: 1222

[40]

Soltani P, Taban E, Faridan M, Samaei SE, Amininasab S. Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca gloriosa fiber. Appl Acoust, 2020, 157: 106999

[41]

Taban E, Tajpoor A, Faridan M, Samaei SE, Beheshti MH. Acoustic absorption characterization and prediction of natural coir fibers. Acoust Aust, 2019, 47: 67

[42]

Qi LZ, Zhi C, Meng JG, Wang YZ, Liu YM, Song QW, Wu Q, Wei L, Dai Y, Zou J, Miao MH, Yu LJ. Highly efficient acoustic absorber designed by backing cavity-like and filled-microperforated plate-like structure. Mater Des, 2023, 225: 111484

[43]

Chen Q, Chen SF, Fan H, Yan ZH, Liu LY, Chen YJ, Li JB, Luo LJ. Weather-resistant wood for sound absorption, thermal insulation and NO removal. Chem Eng J, 2024, 494: 153219

[44]

Zong DD, Cao LT, Yin X, Si Y, Zhang SC, Yu JY, Ding B. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat Commun, 2021, 12: 6599

[45]

Buratti C, Merli F, Moretti E. Aerogel-based materials for building applications: influence of granule size on thermal and acoustic performance. Energy Build, 2017, 152: 472

[46]

Duan CY, Cui G, Xu XB, Liu PS. Sound absorption characteristics of a high-temperature sintering porous ceramic material. Appl Acoust, 2012, 73: 865

[47]

Li LB, Yang F, Jin YB, Li PF, Zhang SY, Xue K, Lu GX, Fan HL. Multifunctional hybrid plate lattice structure with high energy absorption and excellent sound absorption. Mater Des, 2024, 241: 112946

[48]

Zong DD, Bai WY, Yin X, Yu JY, Zhang SC, Ding B. Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv Funct Mater, 2023, 33: 2301870

Funding

National Natural Science Foundation of China(52102090)

Fundamental Research Funds for the Central Universities(2232022D-04)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/