Reconfigurable 3D Stretchable Fabric Evaporator with Spiral Cone Array for Dynamically Matched Solar Intensity and Efficient Desalination

Zhiwei Lei , Shang Liu , Bihua Hu , Xingzhu Wang , Meng Lin , Baomin Xu

Advanced Fiber Materials ›› : 1 -18.

PDF
Advanced Fiber Materials ›› :1 -18. DOI: 10.1007/s42765-025-00639-1
Research Article
research-article

Reconfigurable 3D Stretchable Fabric Evaporator with Spiral Cone Array for Dynamically Matched Solar Intensity and Efficient Desalination

Author information +
History +
PDF

Abstract

Maintaining the match between input solar energy and required energy through evaporator density management is crucial for efficient solar steam generation compared to conventional static rigid evaporators. Herein, we developed a 3D spiral cone evaporator with dynamic stretchability and investigated the matching relationship between light intensity and evaporator density by employing coupled numerical and experimental approach. This evaporator not only has high mechanical strength, but also has excellent stretching and rebound properties. This design takes full advantage of the dynamic adjustability of 3D spiral cone arrays controlled by the tensile module when encountering different solar illumination, which successfully improves the solar energy utilization. In addition, the fabric cone and spiral surface structure have excellent thermal management capabilities, achieving localized salt crystallization at the apex and excellent antibacterial performance, effectively extending the service life of the evaporator. Consequently, solar energy utilization and vapor diffusion synergies are greatly promoted synergistically, with evaporation rate of 2.55 kg m−2 h−1 and solar efficiency of 94.3%, which is 34.9% higher than static evaporation. This dynamically stretchable evaporator provides a new strategy for evaporation systems, which helps to establish energy matching.

Graphical Abstract

Keywords

Fabric evaporator / Interface evaporation / Stretchable / Evaporator density / Dynamic matching

Cite this article

Download citation ▾
Zhiwei Lei, Shang Liu, Bihua Hu, Xingzhu Wang, Meng Lin, Baomin Xu. Reconfigurable 3D Stretchable Fabric Evaporator with Spiral Cone Array for Dynamically Matched Solar Intensity and Efficient Desalination. Advanced Fiber Materials 1-18 DOI:10.1007/s42765-025-00639-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hering JG, Ingold KM. Water management. Water resources management: what should be integrated?. Science, 2012, 336: 1234

[2]

Zhu Z, Zheng H, Kong H, Ma X, Xiong J. Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness. Nat Water, 2023, 1: 790

[3]

Zhang YX, Tan SC. Best practices for solar water production technologies. Nat Sustain, 2022, 5 554

[4]

Yang Y, Wang D, Liao W, Zeng H, Wu Y, Li L, Feng W, Xue J, Cao H, Chen J, Huang Y, Zheng Y, Wang P, Liu J, Guo M, Zhou H, Fan X. Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination. Adv Fiber Mater, 2024, 6: 1026

[5]

Hu J, Sun Y, Liu Z, Zhu B, Zhang L, Xu N, Zhu M, Zhu J, Chen Z. Photothermal fabrics for solar-driven seawater desalination. Prog Mater Sci, 2025, 150 101407

[6]

Yang B, Zhang Z, Liu P, Fu X, Wang J, Cao Y, Tang R, Du X, Chen W, Li S, Yan H, Li Z, Zhao X, Qin G, Chen XQ, Zuo L. Flatband lambda-Ti(3)O(5) towards extraordinary solar steam generation. Nature, 2023, 622: 499

[7]

Ren L, Zhang Q, Zhao G, Chen T, Wang Y, Xiao X, Yang H, Xu N, Xu W. Interconnected porous fabric-based scalable evaporator with asymmetric wetting properties for high-yield and salt-rejecting solar brine treatment. Adv Fiber Mater, 2024, 6: 1162

[8]

Liu S, Huang C, Huang Q. A new carbon-black/cellulose-sponge system with water supplied by injection for enhancing solar vapor generation. J Mater Chem A, 2019, 7: 17954

[9]

Liu S, Li S, Yang Q, et al.. Scale-up of solar interfacial evaporation devices: advanced optical, thermal, and water management for efficient seawater desalination. Energy Environ Sci, 2025

[10]

Li X, Chen Y, Zhu B, Salimi M, Zhang L, Amidpour M, Zhu M, Chen Z. Biomimetic design of photothermal/electrothermal fabric composed of carbon-core/nanorod-array-shell fibers for efficient all-weather seawater evaporation. Adv Funct Mater, 2025, 35 2423472

[11]

Lei Z, Zhu S, Sun X, Yu S, Liu X, Liang K, Zhang X, Qu L, Wang L, Zhang X. A multiscale porous 3d-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv Funct Mater, 2022, 32 2205790

[12]

Lei Z, Hu B, Zhu P, Wang X, Xu B. A multilayer mesh porous 3D-felt fabric evaporator with concave array structures for high-performance solar desalination and electricity generation. Nano Energy, 2024, 122 109307

[13]

Hu J, Pazuki MM, Li R, Salimi M, Cai H, Peng Y, Liu Z, Zhao T, Amidpour M, Wei Y, Chen Z. Biomimetic design of breathable 2D photothermal fabric with three-layered structure for efficient four-plane evaporation of seawater. Adv Mater, 2025, 37 2420482

[14]

Lei Z, Sun X, Zhu S, Dong K, Liu X, Wang L, Zhang X, Qu L, Zhang X. Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett, 2022, 14: 10

[15]

Wang M, Hu J, Li M, Zhang L, Salimi M, Amidpour M, Chen Z. Bioinspired design of photothermal anti-fouling fabrics for solar-driven sustainable seawater desalination. Nano Energy, 2025, 136 110726

[16]

Wu X, Lu Y, Ren X, Wu P, Chu D, Yang X, Xu H. Interfacial solar evaporation: from fundamental research to applications. Adv Mater, 2024, 36 2313090

[17]

Li S, Liu S, Yang Q, Deng S, Lin M. Cover matters: enhanced performance of multistage solar evaporator with tuned optical and thermal cover properties. Energy Environ Sci, 2024, 18: 275

[18]

Song X, Li X, Zhu B, Sun S, Chen Z, Zhang L. MnO2/Poly-L-lysine co-decorated carbon-fiber cloth with decreased evaporation enthalpy and enhanced photo absorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv Fiber Mater, 2024, 6: 1569

[19]

Hu A, Zhao Y, Hu Q, Chen C, Lu X, Cui S, Liu B. Highly efficient solar steam evaporation via elastic polymer covalent organic frameworks monolith. Nat Commun, 2024, 15: 9484

[20]

Yu H, Jin H, Liang Y, Wang D, Lu Y, Yang X, Xu H. A new era of passive continuous freshwater production: when interfacial solar evaporation marries moisture harvest. ACS Energy Lett, 2025, 10: 1192

[21]

Chong W, Meng R, Liu Z, Liu Q, Hu J, Zhu B, Macharia DK, Chen Z, Zhang L. Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv Fiber Mater, 2023, 5: 1063

[22]

Yang Z, Li D, Zhu Y, Zhu X, Yu W, Yang K, Chen B. Developing salt-rejecting evaporators for solar desalination: a critical review. Environ Sci Technol, 2024, 58: 8610

[23]

Yang K, Pan T, Dang S, Gan Q, Han Y. Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat Commun, 2022, 13: 6653

[24]

Abdelsalam MA, Sajjad M, Raza A, AlMarzooqi F, Zhang T. Extreme salt-resisting multistage solar distillation with thermohaline convection. Nat Commun, 2024, 15 874

[25]

Zhao J, Liu Z, Low SC, Xu Z, Tan SH. Electrospinning technique meets solar energy: electrospun nanofiber-based evaporation systems for solar steam generation. Adv Fiber Mater, 2023, 5: 1318

[26]

Hou L, Wang N, Yu L-J, Liu J, Zhang S, Cui Z, Li S, Li H, Liu X, Jiang L, Zhao Y. High-performance janus solar evaporator for water purification with broad spectrum absorption and ultralow heat loss. ACS Energy Lett, 2022, 8 553

[27]

He N, Yang Y, Wang H, Li F, Jiang B, Tang D, Li L. Ion-transfer engineering via janus hydrogels enables ultrahigh performance and salt-resistant solar desalination. Adv Mater, 2023, 35 2300189

[28]

Liu X, Chen F, Li Y, Jiang H, Mishra DD, Yu F, Chen Z, Hu C, Chen Y, Qu L, Zheng W. 3D hydrogel evaporator with vertical radiant vessels breaking the trade-off between thermal localization and salt resistance for solar desalination of high-salinity. Adv Mater, 2022, 34 2203137

[29]

Liu H, Chen B, Chen Y, Zhou M, Tian F, Li Y, Jiang J, Zhai W. Bioinspired self-standing, self-floating 3d solar evaporators breaking the trade-off between salt cycle and heat localization for continuous seawater desalination. Adv Mater, 2023, 35 2301596

[30]

Xu N, Zhang H, Lin Z, Li J, Liu G, Li X, Zhao W, Min X, Yao P, Zhou L, Song Y, Zhu B, Zhu S, Zhu J. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci Rev, 2021, 8 nwab065

[31]

Jiang H, Liu X, Wang H, Wang D, Guo Y, Wang D, Gao G, Wang X, Hu C. Waterwheel-inspired rotating evaporator for efficient and stable solar desalination even in saturated brine. Sci Bull, 2023, 68: 1640

[32]

Xia QC, Deng ZH, Sun SW, Zhao W, Ding J, Xi BD, Gao GD, Wang C. Solar- enhanced lithium extraction with self- sustaining water recycling from salt- lake brines. Proc Natl Acad Sci USA, 2024, 121: 2400159121

[33]

Wu Y, Ma C, Zhu K, Jin L, Song L, Li L, Lu Y, Zheng Y, Zhang Y, Zheng X, Wu S, Pang Y, Shen Z, Tan SC, Chen H. Asymmetric evaporation for efficient and simultaneous extraction of freshwater, salt, and electrical energy from seawater. Energy Environ Sci, 2024, 17: 9303

[34]

Xia Y, Hou Q, Jubaer H, Li Y, Kang Y, Yuan S, Liu H, Woo MW, Zhang L, Gao L, Wang H, Zhang X. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ Sci, 2019, 12: 1840

[35]

Wu L, Dong Z, Cai Z, Ganapathy T, Fang NX, Li C, Yu C, Zhang Y, Song Y. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat Commun, 2020, 11: 521

[36]

Wang Y, Zhao W, Lee Y, Li Y, Wang Z, Tam KC. Thermo-adaptive interfacial solar evaporation enhanced by dynamic water gating. Nat Commun, 2024, 15: 6157

[37]

Hu Y, Ma H, Wu M, Lin T, Yao H, Liu F, Cheng H, Qu L. A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nat Commun, 2022, 13: 4335

[38]

Ren J, Xu J, Tian S, Shi K, Gu T, Zhao J, Li X, Zhou Z, Tijing L, Shon HK. Hydrodynamic solar-driven interfacial evaporation-gone with the flow. Water Res, 2024, 266 122432

[39]

Wei D, Wang C, Shi G, Zhang J, Wang F, Tan P, Zhao Z, Xie Y. Enabling self-adaptive water-energy-balance of photothermal water diode evaporator: dynamically maximizing energy utilization under the ever-changing sunlight. Adv Mater, 2024, 36 2309507

[40]

Li H, Zhang WX, Liao X, Xu LZ. Kirigami enabled reconfigurable three- dimensional evaporator arrays for dynamic solar tracking and high efficiency desalination. Sci Adv, 2024, 1026

[41]

Li J, Tang S, Hao J, Yuan Q, Wang T, Pan L, Li J, Yang S, Wang C. Interfacial built-in electric field and crosslinking pathways enabling WS2/Ti3C2T heterojunction with robust sodium storage at low temperature. J Energy Chem, 2024, 89: 635

[42]

Wang Q, Liu A, Qiao S, Zhang Q, Huang C, Lei D, Shi X, He G, Zhang F. Mott-schottky MXene@WS2 heterostructure: structural and thermodynamic insights and application in ultra stable lithium−sulfur batteries. Chemsuschem, 2023, 16: 202300507

[43]

Tang Y, Zhou W, Shang Q, Guo Y, Hu H, Li Z, Zhang Y, Liu L, Wang H, Tan X, Yu T, Ye J. Discerning the mechanism of expedited interfacial electron transformation boosting photocatalytic hydrogen evolution by metallic 1T-WS2-induced photothermal effect. Appl Catal B Environ Energy, 2022, 310 121295

[44]

Wang H, Zhang C, Zhang Z, Zhou B, Shen J, Du A. Biomimetic ultra-black sponge derived from loofah and co-MOF for long-term solar-powered vapor generation and desalination. Solar RRL, 2021, 5 2000817

[45]

Zheng H, Fan J, Chen A, Li X, Xie X, Liu Y, Ding Z. Enhancing solar-driven water purification by multiscale biomimetic evaporators featuring lamellar MoS2/Go heterojunctions. ACS Nano, 2024, 18(4311

[46]

Chen Y, Zhou R, Wang H, Ning X, Du Y, Xie H, et al.. Efficient fabrication of fabric-based Janus interfacial evaporator via melt centrifugal spinning for simultaneous solar evaporation, pollutant degradation, antibacterial action, and thermoelectric output. J Energy Chem, 2025, 105: 385

[47]

Wen C, Guo H, Yang J, Li Q, Zhang X, Sui X, et al.. Zwitterionic hydrogel coated superhydrophilic hierarchical anti-fouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chem Eng J, 2021, 421 130344

[48]

Wu J, Liu J, Yin G, Zhao M, Zhao HY, Li C, et al. Adaptive and multifunctional emulsion solar evaporators with high operating stability in extreme environments. Adv Mater. 2025:e09017. https://doi.org/10.1002/adma.202509017

[49]

Liu K, Gao Y, Zhang Y, Zheng Y, He J, Huang Y, et al.. MXene-loaded multifunctional nanoparticles with on-demand controlled antimicrobial and antioxidant capacity for multi-modal treating bacterial prostatitis. Biomaterials, 2025, 320 123234

[50]

Wang X, Ding J, Chen X, Wang S, Chen Z, Chen Y, et al.. Light-activated nanoclusters with tunable ROS for wound infection treatment. Bioact Mater, 2024, 41: 385

[51]

Meng X, Wang M, Heng L, Jiang L. Underwater mechanically robust oil-repellent materials: combining conflicting properties using a heterostructure. Adv Mater, 2018, 30 1706634

[52]

Si Y, Dong Z, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent Sci, 2018, 4: 1102

[53]

Tang WJ, Yang K, Qin J, Li X, Niu XL. Earth Syst Sci Data, 2019, 11: 1905

Funding

Shenzhen Science and Technology Innovation Committee(JCYJ2022081810040601)

National Natural Science Foundation of China(22309077)

High Level of Special Funds from SUSTech Energy Institute for Carbon Neutrality(G03034K001)

Project for Building a Science and Technology Innovation Center Facing South Asia and Southeast Asia(202403AP140015)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

/