Programming Ordered Tissue Reconstruction via Artificial Bionic Tendon Sheath for Tendinopathy Treatment

Chao Li , Wentao Li , Ronghui Deng , Lingan Huang , Yifan Song , Xianjie Wei , Bingbing Xu , Guoqing Cui , Zehao Chen , Jiakuo Yu

Advanced Fiber Materials ›› : 1 -26.

PDF
Advanced Fiber Materials ›› :1 -26. DOI: 10.1007/s42765-025-00637-3
Research Article
research-article

Programming Ordered Tissue Reconstruction via Artificial Bionic Tendon Sheath for Tendinopathy Treatment

Author information +
History +
PDF

Abstract

Excessive interface friction and advanced glycation end products (AGEs) disrupt collagen ordered deposition, promoting scar formation in tendinopathies. Inspired by tendon sheath anatomy, we developed a bionic bilayer nano-membrane via electrospinning and photocrosslinking to initiate the directional and orderly regeneration process of tendon tissue. The lubricating layer (PP), containing phosphatidylserine (PS), reduces frictional stress, while the regenerative layer (GM/GV), composed of gelatin methacrylate (GM) and vanillin-modified gelatin (GV), scavenges ROS and mitigates AGEs-induced collagen disorder deposition. This parallel bilayer structure guides tendon cell alignment and promotes ordered collagen deposition. Additionally, vanillin suppresses the AGEs/TGF-β/Smad pathway, reducing scar formation and tissue adhesion. In vitro/in vivo tests showed a fivefold decrease in coefficient of friction (COF) and a tenfold increase in Achilles tendon function index (AFI) compared to the PCL and normal groups, respectively. The PP@GM/GV membrane, regulated by mechano-biochemical coupling factors, offers a promising strategy for tendinopathy repair, and holds significant potential for clinical translation in guiding functional tendon regeneration and improving patient outcomes.

Graphical Abstract

Keywords

Tendinopathy / Tendon adhesion / Tendon repair / Tissue lubrication / Artificial membrane

Cite this article

Download citation ▾
Chao Li, Wentao Li, Ronghui Deng, Lingan Huang, Yifan Song, Xianjie Wei, Bingbing Xu, Guoqing Cui, Zehao Chen, Jiakuo Yu. Programming Ordered Tissue Reconstruction via Artificial Bionic Tendon Sheath for Tendinopathy Treatment. Advanced Fiber Materials 1-26 DOI:10.1007/s42765-025-00637-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol, 2010, 6: 262

[2]

Traweger A, Scott A, Kjaer M, Wezenbeek E, Scattone Silva R, Kennedy JG, Butler JJ, Gomez-Florit M, Gomes ME, Snedeker JG, Dakin SG, Wildemann B. Achilles tendinopathy. Nat Rev Dis Primers, 2025, 11: 20

[3]

Riel H, Lindstrøm CF, Rathleff MS, Jensen MB, Olesen JL. Prevalence and incidence rate of lower-extremity tendinopathies in a Danish general practice: a registry-based study. BMC Musculoskelet Disord, 2019, 20: 239

[4]

Jin S, Wang Y, Wu X, Li Z, Zhu L, Niu Y, Zhou Y, Liu Y. Young exosome bio-nanoparticles restore aging-impaired tendon stem/progenitor cell function and reparative capacity. Adv Mater, 2023, 35: 2211602

[5]

Fang Y, Zhu D, Wei J, Qian L, Qiu R, Jia T, Huang K, Zhao S, Ouyang J, Li M, Li S, Li Y. Collagen denaturation in post-run Achilles tendons and Achilles tendinopathy: in vivo mechanophysiology and magnetic resonance imaging. Sci Adv, 2024, 10eado2015

[6]

Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, Guan B, Li Z, Zhang T, Zhou Y, Wang C-Y, Liu Y. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun, 2021, 12: 1293

[7]

Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a nanoparticle-based tendon-targeting drug delivery system to pharmacologically modulate tendon healing. Sci Adv, 2024, 10eadn2332

[8]

Chen M, Zou F, Wang P, Hu W, Shen P, Wu X, Xu H, Rui Y, Wang X, Wang Y. Dual-barb microneedle with JAK/STAT inhibitor-loaded nanovesicles encapsulation for tendinopathy. Adv Healthc Mater, 2024, 13: 2401512

[9]

Noskovicova N, Schuster R, van Putten S, Ezzo M, Koehler A, Boo S, Coelho NM, Griggs D, Ruminski P, McCulloch CA, Hinz B. Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat Biomed Eng, 2021, 5: 1437

[10]

Heo S-J, Thakur S, Chen X, Loebel C, Xia B, McBeath R, Burdick JA, Shenoy VB, Mauck RL, Lakadamyali M. Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomed Eng, 2023, 7: 177

[11]

Shinohara I, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Biochemical markers of aging (advanced glycation end products) and degeneration are increased in type 3 rotator cuff tendon stumps with increased signal intensity changes on MRI. Am J Sports Med, 2022, 50: 1960

[12]

Lee JM, Veres SP. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon. J Appl Physiol, 2019, 126: 832

[13]

Li Y, Fessel G, Georgiadis M, Snedeker JG. Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol, 2013, 32: 169

[14]

Van Gulick L, Saby C, Mayer C, Fossier E, Jaisson S, Okwieka A, Gillery P, Chenais B, Mimouni V, Morjani H, Beljebbar A. Biochemical and morpho-mechanical properties, and structural organization of rat tail tendon collagen in diet-induced obesity model. Int J Biol Macromol, 2024, 254127936

[15]

Xiang L, Liang J, Wang Z, Lin F, Zhuang Y, Saiding Q, Wang F, Deng L, Cui W. Motion lubrication suppressed mechanical activation via hydrated fibrous gene patch for tendon healing. Sci Adv, 2023, 9eadc9375

[16]

Xie X, Xu J, Ding D, Lin J, Han K, Wang C, Wang F, Zhao J, Wang L. Janus membranes patch achieves high-quality tendon repair: inhibiting exogenous healing and promoting endogenous healing. Nano Lett, 2024, 24: 4300

[17]

Imere A, Ligorio C, O'Brien M, Wong JKF, Domingos M, Cartmell SH. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomater, 2021, 119: 140

[18]

Freedman BR, Kuttler A, Beckmann N, Nam S, Kent D, Schuleit M, Ramazani F, Accart N, Rock A, Li J, Kurz M, Fisch A, Ullrich T, Hast MW, Tinguely Y, Weber E, Mooney DJ. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat Biomed Eng, 2022, 6: 1167

[19]

Wang X, Liu S, Yu T, An S, Deng R, Tan X, Crane J, Zhang W, Pan D, Wan M, Carr A, Cao X. Inhibition of integrin αvβ6 activation of TGF-β attenuates tendinopathy. Adv Sci, 2022, 9: 2104469

[20]

Millar NL, Silbernagel KG, Thorborg K, Kirwan PD, Galatz LM, Abrams GD, Murrell GAC, McInnes IB, Rodeo SA. Tendinopathy. Nat Rev Dis Primers, 2021, 7: 1

[21]

Barker-Davies RM, Nicol A, McCurdie I, Watson J, Baker P, Wheeler P, Fong D, Lewis M, Bennett AN. Study protocol: a double blind randomised control trial of high volume image guided injections in Achilles and patellar tendinopathy in a young active population. BMC Musculoskelet Disord, 2017, 18: 204

[22]

Boesen AP, Langberg H, Hansen R, Malliaras P, Boesen MI. High volume injection with and without corticosteroid in chronic midportion achilles tendinopathy. Scand J Med Sci Sports, 2019, 29: 1223

[23]

Pringels L, Cook JL, Witvrouw E, Burssens A, Vanden Bossche L, Wezenbeek E. Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: a narrative review and conceptual framework. Br J Sports Med, 2023, 57: 1042

[24]

Yang R, Li G, Zhuang C, Yu P, Ye T, Zhang Y, Shang P, Huang J, Cai M, Wang L, Cui W, Deng L. Gradient bimetallic ion–based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci Adv, 2021, 7eabg3816

[25]

Liu G, Xia P, Li B, Qiao T, Wu Q, Sarfraz MH, Sun Y, Ouyang H, He Y. Strong and tough tendon-mimetic silk fibroin for tissue regeneration. Adv Healthcare Mater, 2025, 14: 2500428

[26]

Freedman BR, Mooney DJ, Weber E. Advances toward transformative therapies for tendon diseases. Sci Transl Med, 2022, 14eabl8814

[27]

No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. Adv Mater, 2020, 32: 1904511

[28]

Fernandez-Yague MA, Trotier A, Demir S, Abbah SA, Larrañaga A, Thirumaran A, Stapleton A, Tofail SAM, Palma M, Kilcoyne M, Pandit A, Biggs MJ. A self-powered piezo-bioelectric device regulates tendon repair-associated signaling pathways through modulation of mechanosensitive ion channels. Adv Mater, 2021, 33: 2008788

[29]

Nakamichi R, Ma S, Nonoyama T, Chiba T, Kurimoto R, Ohzono H, Olmer M, Shukunami C, Fuku N, Wang G, Morrison E, Pitsiladis YP, Ozaki T, D’Lima D, Lotz M, Patapoutian A, Asahara H. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci Trans Med, 2022, 14: 5557.

[30]

Chen C, Zheng X, Wang C, Zhou H, Zhang Y, Ye T, Yang Y. CTHRC1 attenuates tendinopathy via enhancing EGFR/MAPK signaling pathway. Adv Sci, 2024, 11: 2406611

[31]

Kent RNIII, Jewett ME, Buck TP, Said M, Hold LA, Crawford EA, Killian ML, Abraham AC, Huang AH, Baker BM. Engineered microenvironmental cues from fiber-reinforced hydrogel composites drive tenogenesis and aligned collagen deposition. Adv Healthc Mater, 2024, 13: 2400529

[32]

Wang Z, Xiang L, Lin F, Tang Y, Deng L, Cui W. A biomaterial-based hedging immune strategy for scarless tendon healing. Adv Mater, 2022, 34: 2200789

[33]

Yang Q, Li J, Meng H, Wang Y, Hu L, Su W, Xu J, Hou J, Zhao R, Wang Z, Zhang K, Wu Y, Wang L. Coaxial electrospun nanofibrous membranes as dual-functional biomimetic tendon sheath for tendon repair and anti-peritendinous adhesion. Adv Healthc Mater, 2025, 14: 2402074

[34]

Cheng L, Wang Y, Sun G, Wen S, Deng L, Zhang H, Cui W. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion. Research, 2020

[35]

Erukainure OL, Houreld NN. Vanillin enhances photobiomodulation wound healing by modulating glyco-oxidative stress and glucose dysmetabolism in diabetic wounded fibroblast cells. J Cell Mol Med, 2025, 29e70537

[36]

Chen Z, Lv Z, Zhuang Y, Saiding Q, Yang W, Xiong W, Zhang Z, Chen H, Cui W, Zhang Y. Mechanical signal-tailored hydrogel microspheres recruit and train stem cells for precise differentiation. Adv Mater (Deerfield Beach, Fla), 2023, 35e2300180

[37]

Saiding Q, Jin J, Qin M, Cai Z, Lu M, Wang F, Cui W, Chen X. Heat-shrinkable electrospun fibrous tape for restoring structure and function of loose soft tissue. Adv Funct Mater, 2021, 31: 2007440

[38]

Jiang H, Lin Z, Li J, Song T, Zang H, Li P, Li J, Hou W, Zhou J, Li Y. RADSC-loaded tubular units composed of multilayer electrospun membranes promoted bone regeneration of critical-sized skull defects. Mater Future, 2024

[39]

Wang Z, Cui W. Two sides of electrospun fiber in promoting and inhibiting biomedical processes. Adv Ther, 2021, 4: 2000096

[40]

Wang H, Zhang Y, Zhang Y, Li C, Zhang M, Wang J, Zhang Y, Du Y, Cui W, Chen W. Activating macrophage continual efferocytosis via microenvironment biomimetic short fibers for reversing inflammation in bone repair. Adv Mater, 2024, 36: 2402968

[41]

Zhang J, Chen L, Wang J, Lei Y, Huang Y, Xu J, Hu N, Huang W, Cui W, Luo X. Multisite captured copper ions via phosphorus dendrons functionalized electrospun short nanofibrous sponges for bone regeneration. Adv Funct Mater, 2023, 33: 2211237

[42]

Liu C, Zhang X, Niu J, Sun J, Wang X, Wang J, Chen C, Zhou X, Yang H, Liu X, Cui W, Shi Q. Virus-engineered microsol electrospun scaffold promotes the reprogramming of fibroblasts to neurons. Adv Funct Mater, 2023, 33: 2301897

[43]

Smoak MM, Hogan KJ, Grande-Allen KJ, Mikos AG. Bioinspired electrospun dECM scaffolds guide cell growth and control the formation of myotubes. Sci Adv, 2021, 7eabg4123

[44]

Park J, Nam J, Yun H, Jin H-J, Kwak HW. Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydr Polym, 2021, 254117317

[45]

Demangeot Y, Whiteley R, Gremeaux V, Degache F. The load borne by the Achilles tendon during exercise: a systematic review of normative values. Scand J Med Sci Sports, 2023, 33: 110

[46]

Snedeker JG, Foolen J. Tendon injury and repair - a perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater, 2017, 63: 18

[47]

Steck J, Kim J, Kutsovsky Y, Suo Z. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature, 2023, 624: 303

[48]

Bi L, Godwin B, Baran MJ, Nazir R, Wulff JE. A cleavable crosslinking strategy for commodity polymer functionalization and generation of reprocessable thermosets. Angew Chem Int Ed Engl, 2023, 62e202304708

[49]

Zitnay JL, Jung GS, Lin AH, Qin Z, Li Y, Yu SM, Buehler MJ, Weiss JA. Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. Sci Adv, 2020, 6eaba2795

[50]

Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med, 2018, 10eaao0475

[51]

Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med, 2025, 17eadt6387

[52]

Sharma V, Letson J, Furuta S. Fibrous stroma: driver and passenger in cancer development. Sci Signal, 2022, 15eabg3449

[53]

Best KT, Nichols AEC, Knapp E, Hammert WC, Ketonis C, Jonason JH, Awad HA, Loiselle AE. NF-κB activation persists into the remodeling phase of tendon healing and promotes myofibroblast survival. Sci Signal, 2020, 13eabb7209

[54]

Faust HJ, Cheng T-Y, Korsunsky I, Watts GFM, Gal-Oz ST, Trim WV, Kongthong S, Jonsson AH, Simmons DP, Zhang F, Padera R, Chubinskaya S, Albrecht J, Anolik JH, Apruzzese W, Barnas JL, Bathon JM, Ben-Artzi A, Boyce BF, Boyle DL, Bridges SL, Bykerk VP, Campbell D, Ceponis A, Chicoine A, Curtis M, Deane KD, DiCarlo E, Donlin LT, Dunn P, Filer A, Carr H, Firestein GS, Forbess L, Geraldino-Pardilla L, Goodman SM, Gravallese EM, Rao D, Gregersen PK, Guthridge JM, Gutierrez-Arcelus M, Holers VM, Horowitz D, Hughes LB, Ivashkiv LB, Ishigaki K, James JA, Kang JB, Keras G, Lakhanpal A, Lederer JA, Lewis MJ, Li Y, Liao K, Mandelin AM, Mantel I, Marks KE, Maybury M, McDavid A, McGeachy MJ, Mears JR, Meednu N, Millard N, Moreland L, Nayar S, Nerviani A, Orange DE, Perlman H, Pitzalis C, Rangel-Moreno J, Raza K, Reshef Y, Ritchlin C, Rivellese F, Robinson WH, Rumker L, Sahbudin I, Sakaue S, Seifert JA, Scheel-Toellner D, Singaraju A, Slowikowski K, Smith M, Tabechian D, Utz PJ, Weinand K, Weisenfeld D, Weisman MH, Xiao Q, Zhu Z, Li ZJ, Cordle A, Wyse A, Wei K, Raychaudhuri S, Lynch L, Moody DB, Brenner MBAccelerating Medicines Partnership RASLEN. Adipocyte associated glucocorticoid signaling regulates normal fibroblast function which is lost in inflammatory arthritis. Nat Commun, 2024, 15: 9859

[55]

Li C, Du Y, Lv H, Zhang J, Zhuang P, Yang W, Zhang Y, Wang J, Cui W, Chen W. Injectable amphipathic artesunate prodrug-hydrogel microsphere as gene/drug nano-microplex for rheumatoid arthritis therapy. Adv Funct Mater, 2022, 32: 2206261

[56]

Bakht SM, Pardo A, Gomez-Florit M, Caballero D, Kundu SC, Reis RL, Domingues RMA, Gomes ME. Human tendon-on-chip: unveiling the effect of core compartment-T cell spatiotemporal crosstalk at the onset of tendon inflammation. Adv Sci (Weinheim, Baden-Wurttemberg, Germany), 2024, 11: e2401170

[57]

Zhu S, Wang S, Huang Y, Tang Q, Fu T, Su R, Fan C, Xia S, Lee PS, Lin Y. Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils. Nat Commun, 2024, 15: 118

[58]

Zapp C, Obarska-Kosinska A, Rennekamp B, Kurth M, Hudson DM, Mercadante D, Barayeu U, Dick TP, Denysenkov V, Prisner T, Bennati M, Daday C, Kappl R, Gräter F. Mechanoradicals in tensed tendon collagen as a source of oxidative stress. Nat Commun, 2020, 11: 2315

[59]

Oikawa K, Goto-Yamada S, Hayashi Y, Takahashi D, Kimori Y, Shibata M, Yoshimoto K, Takemiya A, Kondo M, Hikino K, Kato A, Shimoda K, Ueda H, Uemura M, Numata K, Ohsumi Y, Hara-Nishimura I, Mano S, Yamada K, Nishimura M. Pexophagy suppresses ROS-induced damage in leaf cells under high-intensity light. Nat Commun, 2022, 13: 7493

[60]

Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Murphy RJ, Carr AJ, Dakin SG. Comparison of cellular responses to TGF-β1 and BMP-2 between healthy and torn tendons. Am J Sports Med, 2021, 49: 1892

[61]

Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo B-M, Zhang L, Shi S, Young MF. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 2007, 13: 1219

[62]

Chen S, Lin Y, Yang H, Li Z, Li S, Chen D, Hao W, Zhang S, Chao H, Zhang J, Wang J, Li Z, Li X, Zhan Z, Liu H. A CD26+ tendon stem progenitor cell population contributes to tendon repair and heterotopic ossification. Nat Commun, 2025, 16: 749

[63]

Kollert MR, Krämer M, Brisson NM, Schemenz V, Tsitsilonis S, Qazi TH, Fratzl P, Vogel V, Reichenbach JR, Duda GN. Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology. Nat Biomed Eng, 2025, 9: 772

[64]

Wang X, Li F, Xie L, Crane J, Zhen G, Mishina Y, Deng R, Gao B, Chen H, Liu S, Yang P, Gao M, Tu M, Wang Y, Wan M, Fan C, Cao X. Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat Commun, 2018, 9: 551

Funding

National Natural Science Foundation of China(82172423)

the Young Scientists Fund of the National Natural Science Foundation of China(82302656)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

/