Nature-Inspired Design of Functional Materials: Learning from Living Organisms, Human Life, and Living Habitats

Zirui Liu , Yifan Li , Yingqing Yu , Chang Liu , Sen Lin , Qiushi Wang , Yubo Wang , Jiandong Cui , Hao Zhang , Suqian Ma , Yunhong Liang , Luquan Ren

Advanced Fiber Materials ›› : 1 -57.

PDF
Advanced Fiber Materials ›› :1 -57. DOI: 10.1007/s42765-025-00635-5
Review
review-article

Nature-Inspired Design of Functional Materials: Learning from Living Organisms, Human Life, and Living Habitats

Author information +
History +
PDF

Abstract

Nature, which has been fueled by evolutionary innovation over millions of years, offers an inexhaustible source of inspiration for advanced materials with its infinite complexity and exquisite organization. In recent years, biological solutions have been widely used based on the understanding of multi-functional biological systems. At the same time, the concept of “Learning from Nature” allows material design to flourish further from the diversity of human life and living habitats. This is the key to addressing the challenges of sustainable development between humans and nature, and it is also the inevitability of humanity’s continuous exploration and discovery of the mysteries of nature. In this work, we review recent innovative achievements in advanced material design inspired by living organisms, human life, and living habitats, and summarize representative approaches of nature-inspired simulation. Finally, the challenges and perspectives on functional materials based on natural inspirations are proposed and discussed in detail. We hope to spur continuous efforts and sustainable innovations on nature-inspired functional materials to enable a harmonious and efficient ecosystem.

Graphical Abstract

Keywords

Bioinspired materials / Bionic design / Fibers / Biomass / Composites

Cite this article

Download citation ▾
Zirui Liu, Yifan Li, Yingqing Yu, Chang Liu, Sen Lin, Qiushi Wang, Yubo Wang, Jiandong Cui, Hao Zhang, Suqian Ma, Yunhong Liang, Luquan Ren. Nature-Inspired Design of Functional Materials: Learning from Living Organisms, Human Life, and Living Habitats. Advanced Fiber Materials 1-57 DOI:10.1007/s42765-025-00635-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stuart-Fox D, Ng L, Elgar MA, Hölttä-Otto K, Schröder-Turk GE, Voelcker NH, Watson GS. Bio-informed materials: three guiding principles for innovation informed by biology. Nat Rev Mater, 2023, 8: 565.

[2]

Zhao C, Park J, Root SE, Bao Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat Rev Bioeng, 2024, 2: 671

[3]

Faber JA, Arrieta AF, Studart AR. Bioinspired spring origami. Science, 2018, 359: 1386

[4]

Chen SM, Wen SM, Zhang SC, Wang CX, Yu SH. Biological and bioinspired bouligand structural materials: recent advances and perspectives. Matter, 2024, 7: 378.

[5]

Zhan Z, Su Y, Xie M, Li Y, Shuai Y, Wang Z. Recent advances and challenges for bionic solar water evaporation. Mater Today, 2024, 80: 529

[6]

Zhao X, Bhagia S, Gomez-Maldonado D, Tang X, Wasti S, Lu S, Zhang S, Parit M, Rencheck ML, Korey M, Jiang H, Zhu J, Meng X, Lamm ME, Copenhaver K, Peresin MS, Wang L, Tekinalp H, Yang G, Kumar V, Chen G, Nawaz K, Chelsea Chen X, Vaidya U, Ragauskas AJ, Webb E, Gardner DJ, He P, He X, Li K, Ozcan S. Bioinspired design toward nanocellulose-based materials. Mater Today, 2023, 66: 409

[7]

Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid microalgae robots: design, fabrication, materials, and applications. Adv Mater, 2024, 36: 1

[8]

Qi M, Yang R, Wang Z, Liu Y, Zhang Q, He B, Li K, Yang Q, Wei L, Pan C, Chen M. Bioinspired self-healing soft electronics. Adv Funct Mater, 2023, 332214479

[9]

Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon WJ, Swanson B, Zavattieri P, Dimasi E, Kisailus D. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science, 2012, 336: 2075.

[10]

Wei X, Wang Y, Liu Y, Ji K, Li K, Wang J, Gu Z. Biomimetic design strategies for biomedical applications. Matter, 2024, 7: 826

[11]

Jiang Y, Dong K, An J, Liang F, Yi J, Peng X, Ning C, Ye C, Wang ZL. UV-Protective, Self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl Mater Interfaces, 2021, 13: 11205

[12]

Li S, Yang R, Sun S, Niu B. Advances in the analysis of honeycomb structures: a comprehensive review. Compos Part B Eng, 2025, 296112208

[13]

Li W. Learning from nature: chemical self-assembly for materials science. Matter, 2020, 3: 968

[14]

Xiao X, Lan Y, Chen J. Learning from nature for healthcare, energy, and environment. Innovation, 2021, 2100135

[15]

Plocher J, Mencattelli L, Narducci F, Pinho S. Learning from nature: bio-inspiration for damage-tolerant high-performance fibre-reinforced composites. Compos Sci Technol, 2021, 208108669

[16]

Zhang N, Huang Y, Fan Y, Zhang B, Gao S, Meng Q, Li L, Wu F, Chen R. Learning from nature: biomimicry in secondary batteries. Mater Today, 2025, 82: 223

[17]

Temin P. Steam and waterpower in the early nineteenth century. J Econ Hist, 1966, 26: 187.

[18]

Gorelik G. How a falling apple could have helped newton discover universal gravity. Eur Phys J H, 2024, 49: 1.

[19]

Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349: 396

[20]

Chen T, Bilal OR, Lang R, Daraio C, Shea K. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators. Phys Rev Appl, 2019, 111

[21]

Nikoomanesh N, Zandi M, Ganjloo A. Development of ohmic-assisted green extraction technique with ultrasonic and microwave pretreatments: burdock (Arctium lappa L.) root extract. Chem Eng Process, 2024, 199: 109749

[22]

Yuan Y, Liu L, Yang M, Zhang T, Xu F, Lin Z, Ding Y, Wang C, Li J, Yin W, Peng Q, He X, Li Y. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 2017, 123: 223

[23]

Yan J, Zhou T, Yang X, Zhang Z, Li L, Zou Z, Fu Z, Cheng Q. Strong and tough mxene bridging-induced conductive nacre. Angew Chem Int Ed, 2024, 136: 2405228.

[24]

Park JE, Je H, Kim CR, Park S, Yu Y, Cho W, Won S, Kang DJ, Han TH, Kwak R, Lee SG, Kim S, Wie JJ. Programming anisotropic functionality of 3d microdenticles by staggered-overlapped and multilayered microarchitectures. Adv Mater, 2024, 362309518

[25]

Huang Y, Stogin BB, Sun N, Wang J, Yang S, Wong TS. A switchable cross-species liquid repellent surface. Adv Mater, 2017, 291604641

[26]

Patek SN. Biomimetics and evolution. Science, 2014, 345: 1448

[27]

Wu P, Wang J, Jiang L. Bio-inspired photonic crystal patterns. Mater Horiz, 2020, 7: 338

[28]

Stoddart A. Spider silk: spinning an artificial yarn. Nat Rev Mater, 2017, 217003

[29]

Dixon AR, Vondra I. Biting innovations of mosquito-based biomaterials and medical devices. Materials, 2022, 15: 4587

[30]

Tang X, Xiong H, Kong T, Tian Y, DI Li W, Wang L. Bioinspired nanostructured surfaces for on-demand bubble transportation. ACS Appl Mater Interfaces, 2018, 10: 3029

[31]

Feng X, Jia Y, Cai P, Fei J, Li J. Coassembly of photosystem II and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano, 2016, 10: 556

[32]

Teyssier J, Saenko SV, Van Der Marel D, Milinkovitch MC. Photonic crystals cause active colour change in chameleons. Nat Commun, 2015, 6: 6368

[33]

Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H, Mei P, Chou HH, Cui B, Deisseroth K, Ng TN, Bao Z. A skin-inspired organic digital mechanoreceptor. Science, 2015, 350: 313

[34]

Furuta A, Amino M, Yoshio M, Oiwa K, Kojima H, Furuta K. Creating biomolecular motors based on dynein and actin-binding proteins. Nat Nanotechnol, 2017, 12: 233

[35]

Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536: 451

[36]

Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimagi A. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater, 2017, 29: 1701814.

[37]

Kim Y, Chortos A, Xu W, Liu Y, Oh JY, Son D, Kang J, Foudeh AM, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee TW. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360: 998

[38]

Zou Y, Tan P, Shi B, Ouyang H, Jiang D, Liu Z, Li H, Yu M, Wang C, Qu X, Zhao L, Fan Y, Wang ZL, Li Z. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat Commun, 2019, 10: 2695

[39]

Gu L, Poddar S, Lin Y, Long Z, Zhang D, Zhang Q, Shu L, Qiu X, Kam M, Javey A, Fan Z. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581: 278

[40]

Go GT, Lee Y, Seo DG, Lee TW. Organic neuroelectronics: from neural interfaces to neuroprosthetics. Adv Mater, 2022, 342201864

[41]

Zi P, Xu K, Chen J, Wang C, Zhang T, Luo Y, Tian Y, Wen L, Ding X. Intelligent rock-climbing robot capable of multimodal locomotion and hybrid bioinspired attachment. Adv Sci, 2024, 112309058

[42]

Zhao T, Dang X, Manos K, Zang S, Mandal J, Chen M, Paulino GH. Modular chiral origami metamaterials. Nature, 2025, 640: 931

[43]

Katiyar NK, Goel G, Hawi S, Goel S. Nature-inspired materials: emerging trends and prospects. NPG Asia Mater, 2021, 13: 56.

[44]

Tagliaferri S, Gaspard L, Au H, Mattevi C, Titirici MM, Crespo-Ribadeneyra M. Nature-inspired batteries: from biomaterials to biomimetic design strategies. Green Chem, 2024, 26: 6944

[45]

Lu J, Deng J, Wei Y, Yang X, Zhao H, Zhao Q, Liu S, Li F, Li Y, Deng X, Jiang L, Guo L. Hierarchically mimicking outer tooth enamel for restorative mechanical compatibility. Nat Commun, 2024, 15: 10182

[46]

Chen Y, Hu X, Liang Q, Wang X, Zhang H, Jia K, Li Y, Zhang A, Chen P, Lin M, Qiu L, Peng H, He S. Large-scale flexible fabric biosensor for long-term monitoring of sweat lactate. Adv Funct Mater, 2024, 34: 2401270

[47]

Sun H, Sun Y, Buranabunwong C, Li X, Zhang S, Chen Y, Li M. Flexible capacitive sensor based on Miura-ori structure. Chem Eng J, 2023, 468143514

[48]

Huang H, Zhang H, Du N, Lyu Y, Xu J, Fu H, Guan Y, Nan K. Drug origami: a computation-guided approach for customizable drug release kinetics of oral formulations. Matter, 2024, 8: 101878.

[49]

Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, Wang J, Hou L, Dai J, Ding J, Yang H. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv Mater, 2022, 34: 2202044

[50]

Su J, Zhang H, Li H, He K, Tu J, Zhang F, Liu Z, Lv Z, Cui Z, Li Y, Li J, Tang LZ, Chen X. Skin-inspired multi-modal mechanoreceptors for dynamic haptic exploration. Adv Mater, 2024, 36: 2311549

[51]

Hou WH, Wang J, Lv JA. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles. Adv Mater, 2023, 35: 2211800

[52]

Ma Y, Aichmayer B, Paris O, Fratzl P, Meibom A, Metzler RA, Politi Y, Addadi L, Gilbert PUPA, Weiner S. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc Natl Acad Sci, 2009, 106: 6048

[53]

Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci, 2010, 107: 6316

[54]

Dunlop JWC, Fratzl P. Biological composites. Annu Rev Mater Res, 2010, 40: 1

[55]

Wang S, Zhu L, Yu D, Han X, Zhong L, Hou Y, Zheng Y. Bioinspired robust helical-groove spindle-knot microfibers for large-scale water collection. Adv Funct Mater, 2023, 33: 2305244

[56]

Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature, 2010, 463: 640

[57]

Wang Y, Li Z, Fu W, Sun Y, Dai Y. Core–sheath CeO2/SiO2 nanofibers as nanoreactors for stabilizing sinter-resistant Pt, enhanced catalytic oxidation and water remediation. Adv Fiber Mater, 2022, 4: 1278

[58]

Meng X, Xu W, Li Z, Yang J, Zhao J, Zou X, Sun Y, Dai Y. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv Fiber Mater, 2020, 2: 93

[59]

Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider silk-inspired artificial fibers. Adv Sci, 2022, 9: 2103965.

[60]

Arakawa K, Kono N, Malay AD, Tateishi A, Ifuku N, Masunaga H, Sato R, Tsuchiya K, Ohtoshi R, Pedrazzoli D, Shinohara A, Ito Y, Nakamura H, Tanikawa A, Suzuki Y, Ichikawa T, Fujita S, Fujiwara M, Tomita M, Blamires SJ, Chuah J-A, Craig H, Foong CP, Greco G, Guan J, Holland C, Kaplan DL, Sudesh K, Mandal BB, Norma-Rashid Y, Oktaviani NA, Preda RC, Pugno NM, Rajkhowa R, Wang X, Yazawa K, Zheng Z, Numata K. 1000 spider silkomes: linking sequences to silk physical properties. Sci Adv, 2022, 8: eabo6043

[61]

Pei Y, Jordan KE, Xiang N, Parker RN, Mu X, Zhang L, Feng Z, Chen Y, Li C, Guo C, Tang K, Kaplan DL. Liquid-exfoliated mesostructured collagen from the bovine Achilles tendon as building blocks of collagen membranes. ACS Appl Mater Interfaces, 2021, 13: 3186

[62]

Ge G, Lu Y, Qu X, Zhao W, Ren Y, Wang W, Wang Q, Huang W, Dong X. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano, 2020, 14: 218

[63]

Tang Y, Lu C, Xiong R. Biomimetic mechanically robust chiroptical hydrogel enabled by hierarchical bouligand structure engineering. ACS Nano, 2024, 18: 14629

[64]

Xu X, He B, Wang Y, Xi Y, Liu D, Ji Z, Bai L, Dong F, Lu Z, Wang X. Catalytic oxidation properties of 3d printed ceramics with bouligand structures. Chem Eng J, 2023, 474145504

[65]

Grunenfelder LK, Milliron G, Herrera S, Gallana I, Yaraghi N, Hughes N, Evans-Lutterodt K, Zavattieri P, Kisailus D. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles. Adv Mater, 2018, 30: 1705295.

[66]

Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021, 81105637

[67]

Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: the key role of lignin. Carbohydr Polym, 2024, 343122460

[68]

Gilpin W, Bull MS, Prakash M. The multiscale physics of cilia and flagella. Nat Rev Phys, 2020, 2: 74.

[69]

Heim M, Römer L, Scheibel T. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem Soc Rev, 2010, 39: 156

[70]

He W, Wang M, Mei G, Liu S, Khan AQ, Li C, Feng D, Su Z, Bao L, Wang G, Liu E, Zhu Y, Bai J, Zhu M, Zhou X, Liu Z. Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles. Nat Commun, 2024, 153485

[71]

Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature, 2003, 424: 1057

[72]

Zhu S, Wang S, Huang Y, Tang Q, Fu T, Su R, Fan C, Xia S, Lee PS, Lin Y. Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils. Nat Commun, 2024, 15: 118

[73]

Zhao W, Shao F, Sun F, Su Z, Liu S, Zhang T, Zhu M, Liu Z, Zhou X. Neuron-inspired sticky artificial spider silk for signal transmission. Adv Mater, 2023, 352300876

[74]

Dong Z, Peng R, Zhang Y, Shan Y, Ding W, Liu Y, Li J, Zhao M, Jiang LB, Ling S. Tendon repair and regeneration using bioinspired fibrillation engineering that mimicked the structure and mechanics of natural tissue. ACS Nano, 2023, 17: 17858

[75]

Sun J, Guo W, Mei G, Wang S, Wen K, Wang M, Feng D, Qian D, Zhu M, Zhou X, Liu Z. Artificial spider silk with buckled sheath by nano-pulley combing. Adv Mater, 2023, 352212112

[76]

Cui Y, Gong H, Wang Y, Li D, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater, 2018, 30: 1706807.

[77]

Wu M, Shao Z, Zhao N, Zhang R, Yuan G, Tian L, Zhang Z, Gao W, Bai H. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science, 2023, 382: 1379

[78]

Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1

[79]

Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477: 443

[80]

Feng L, Li S, Li Y. Super-hydrophobic surfaces: from natural to artificial. Adv Mater, 2002, 14: 1857

[81]

Tian Y, Su B, Jiang L. Interfacial material system exhibiting superwettability. Adv Mater, 2014, 26: 6872

[82]

He H, Liu L, Ding H, Wang C, Yu P, Ding C, Zhu J, Yang W, Hu Y, Yu B. Biomimetic nanostructured polyimine aerogels with graded porosity, flame resistance, intrinsic superhydrophobicity, and closed-loop recovery. ACS Nano, 2024, 18: 35465

[83]

Ghimire A, Dahl RB, Shen SF, Chen PY. Shark skin denticles: from morphological diversity to multi-functional adaptations and applications. Adv Funct Mater, 2024, 34: 2307121

[84]

Nir S, Reches M. Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Curr Opin Biotechnol, 2016, 39: 48

[85]

Kirschner CM, Brennan AB. Bio-inspired antifouling strategies. Annu Rev Mater Res, 2012, 42: 211

[86]

Tomita T, Murakumo K, Komoto S, Dove A, Kino M, Miyamoto K, Toda M. Armored eyes of the whale shark. PLoS ONE, 2020, 15e0235342

[87]

Tian G, Zhang Y, Feng X, Hu Y. Focus on bioinspired textured surfaces toward fluid drag reduction: recent progresses and challenges. Adv Eng Mater, 2022, 242100696

[88]

Yang K, Yu X, Cui X, Chen D, Shen T, Liu Z, Zhang B, Chen H, Fang R, Dong Z, Jiang L. Surface modification of 3d biomimetic shark denticle structures for drag reduction. Adv Mater, 2025, 37: e2417337

[89]

Gan Z, Turner MD, Gu M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci Adv, 2016, 2e1600084

[90]

Román-Kustas J, Hoffman JB, Reed JH, Gonsalves AE, Oh J, Li L, Hong S, Jo KD, Dana CE, Miljkovic N, Cropek DM, Alleyne M. Molecular and topographical organization: influence on cicada wing wettability and bactericidal properties. Adv Mater Interfaces, 2020, 7: 2000112.

[91]

Liu F, Sun Y, Wang Z, Li B, Niu S, Zhang J, Han Z, Ren L. Reversible antireflection materials inspired by cicada wings for anticounterfeit and photovoltaic cells. ACS Appl Mater Interfaces, 2024, 16: 63049

[92]

Liu Q, Chen F, Dong T, Yu WR, Chen C, Jiang G, Dong Z, Ma P. Large-scale fabrication of snake-skin-inspired protective composite textiles. Adv Fiber Mater, 2024, 6: 978

[93]

Zhang L, Chen H, Guo Y, Wang Y, Jiang Y, Zhang D, Ma L, Luo J, Jiang L. Micro–nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Adv Sci, 2020, 72001125

[94]

Kwak MK, Pang C, Jeong HE, Kim HN, Yoon H, Jung HS, Suh KY. Towards the next level of bioinspired dry adhesives: new designs and applications. Adv Funct Mater, 2011, 21: 3606

[95]

Wang Q, Li Z, Zhang Y, Cui S, Yang Z, Lu Z. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability. Compos Part B Eng, 2020, 202108379

[96]

Zhang J, Lu G, You Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review. Compos Part B Eng, 2020, 201108340

[97]

Zhang Q, Yang X, Li P, Huang G, Feng S, Shen C, Han B, Zhang X, Jin F, Xu F, Lu TJ. Bioinspired engineering of honeycomb structure - using nature to inspire human innovation. Prog Mater Sci, 2015, 74: 332.

[98]

Yuan Z, Wang T, Shao C, Yang S, Sun W, Chen Y, Peng Z, Tong Z. Bioinspired green underwater adhesive gelatin-tannic acid hydrogel with wide range adjustable adhesion strength and multiple environmental adaptability. Adv Funct Mater, 2024, 35: 2412950.

[99]

Benedetti M, du Plessis A, Ritchie RO, Dallago M, Razavi N, Berto F. Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater Sci Eng R Rep, 2021, 144100606

[100]

Qi C, Jiang F, Yang S. Advanced honeycomb designs for improving mechanical properties: a review. Compos Part B Eng, 2021, 227109393

[101]

Xiao S, Chen C, Xia Q, Liu Y, Yao Y, Chen Q, Hartsfield M, Brozena A, Tu K, Eichhorn SJ, Yao Y, Li J, Gan W, Shi SQ, Yang VW, Ricco ML, Zhu JY, Burgert I, Luo A, Li T, Hu L. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374: 465

[102]

Musenich L, Stagni A, Derin L, Libonati F. Tunable energy absorption in 3d-printed data-driven diatom-inspired architected materials. ACS Mater Lett, 2024, 6: 2213

[103]

Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, Buehler MJ, Coveney PV, Dayal K, El-Awady JA, Henderson LC, Kaplan DL, Keten S, Kotov NA, Schatz GC, Vignolini S, Vollrath F, Wang Y, Yakobson BI, Tsukruk VV, Heinz H. Hierarchically structured bioinspired nanocomposites. Nat Mater, 2023, 22: 18

[104]

Chen SM, Wu KJ, Gao HL, Sun XH, Zhang SC, Li XY, Zhang ZB, Wen SM, Zhu YB, Wu HA, Ni Y, Yu SH. Biomimetic discontinuous bouligand structural design enables high-performance nanocomposites. Matter, 2022, 5: 1563

[105]

Tadayon M, Amini S, Masic A, Miserez A. The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Adv Funct Mater, 2015, 25: 6437

[106]

Jiang X, Cheng Y, Shi L, Sun J, Wang R. A soft, fatigue-free, and self-healable ionic elastomer via the synergy of skin-like assembly and bouligand structure. Angew Chem Int Ed Engl, 2024, 63e202411418

[107]

Wang J, Cheng Q, Tang Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem Soc Rev, 2012, 41: 1111

[108]

Zhao H, Yang Z, Guo L. Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Mater, 2018, 101

[109]

Madhav D, Buffel B, Moldenaers P, Desplentere F, Vandeginste V. A review of nacre-inspired materials: chemistry, strengthening-deformation mechanism, synthesis, and applications. Prog Mater Sci, 2023, 139101168

[110]

Pang J, Wang ZY, Song T, Zhang ZB, Meng YF, Zhang SC, Zhang L, Xing WY, Yu SH. A nacre-inspired structural material with thermochromic properties and mechanical robustness by atomic-level design. Natl Sci Rev, 2025, 12: nwaf098

[111]

Du G, Mao A, Yu J, Hou J, Zhao N, Han J, Zhao Q, Gao W, Xie T, Bai H. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat Commun, 2019, 10800

[112]

Versluis F, van Esch JH, Eelkema R. Synthetic self-assembled materials in biological environments. Adv Mater, 2016, 28: 4576

[113]

Ansari AI, Sheikh NA, Kumar N. Visco-mechanical characterization of Molluscs (sea shell) biomimetics designs structures. J Braz Soc Mech Sci Eng, 2024, 46: 326.

[114]

Chen J, Birchall M, MacRobert AJ, Song W. Liquid crystalline hydroxyapatite nanorods orchestrate hierarchical bone-like mineralization. Small, 2024, 202310024

[115]

Lang C, Lloyd EC, Matuszewski KE, Xu Y, Ganesan V, Huang R, Kumar M, Hickey RJ. Nanostructured block copolymer muscles. Nat Nanotechnol, 2022, 17: 752

[116]

Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci, 2007, 52: 1263

[117]

Seto J, Gupta HS, Zaslansky P, Wagner HD, Fratzl P. Tough lessons from bone: extreme mechanical anisotropy at the mesoscale. Adv Funct Mater, 2008, 18: 1905

[118]

Al-Sawalmih A, Li C, Siegel S, Fabritius H, Yi S, Raabe D, Fratzl P, Paris O. Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv Funct Mater, 2008, 18: 3307

[119]

Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA. Deformation mechanisms in nacre. J Mater Res, 2001, 16: 2485

[120]

Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater, 2015, 14: 23

[121]

Evans AG, Suo Z, Wang RZ, Aksay IA, He MY, Hutchinson JW. Model for the robust mechanical behavior of nacre. J Mater Res, 2001, 16: 2475

[122]

Jäger I, Fratzl P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J, 2000, 79: 1737

[123]

Han ZM, Li DH, Yang HB, Zhao YX, Yin CH, Yang KP, Liu HC, Sun WB, Ling ZC, Guan QF, Yu SH. Nacre-inspired nanocomposite films with enhanced mechanical and barrier properties by self-assembly of poly(lactic acid) coated mica nanosheets. Adv Funct Mater, 2022, 32: 2202221

[124]

Li YQ, Yu T, Yang TY, Zheng LX, Liao K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater, 2012, 24: 3426

[125]

Pan XF, Wu B, Gao HL, Chen SM, Zhu YB, Zhou LC, Wu HA, Yu SH. Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv Mater, 2022, 34: 2105299

[126]

Gao HL, Chen SM, Mao LB, Song ZQ, Yao HB, Cölfen H, Luo XS, Zhang F, Pan Z, Meng YF, Ni Y, Yu SH. Mass production of bulk artificial nacre with excellent mechanical properties. Nat Commun, 2017, 8287

[127]

Li Y, Rodriguez-Cabello JC, Aparicio C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl Mater Interfaces, 2017, 9: 5838

[128]

Zhang Q, Ma L, Ji X, He Y, Cui Y, Liu X, Xuan C, Wang Z, Yang W, Chai M, Shi X. High-strength hydroxyapatite scaffolds with minimal surface macrostructures for load-bearing bone regeneration. Adv Funct Mater, 2022, 32: 2204182

[129]

Kong L, Zhao Y, Xiong Y, Chen J, Wang S, Yan Z, Shi H, Liu Z, Wang X. Multiscale engineered artificial compact bone via bidirectional freeze-driven lamellated organization of mineralized collagen microfibrils. Bioact Mater, 2024, 40: 168

[130]

Lin Q, Gao R, Li D, Lu Y, Liu S, Yu Y, Huang Y, Yu W. Bamboo-inspired cell-scale assembly for energy device applications. Npj Flex Electron, 2022, 6: 13

[131]

Han F, Li T, Li M, Zhang B, Wang Y, Zhu Y, Wu C. Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing. Bioact Mater, 2023, 20: 29

[132]

Zhang D, Chen Q, Zhang W, Liu H, Wan J, Qian Y, Li B, Tang S, Liu Y, Chen S, Liu R. Silk-inspired β-peptide materials resist fouling and the foreign-body response. Angew Chem Int Ed, 2020, 59: 9586

[133]

Sun H, Luo Q, Hou C, Liu J. Nanostructures based on protein self-assembly: from hierarchical construction to bioinspired materials. Nano Today, 2017, 14: 16

[134]

Krajina BA, Proctor AC, Schoen AP, Spakowitz AJ, Heilshorn SC. Biotemplated synthesis of inorganic materials: an emerging paradigm for nanomaterial synthesis inspired by nature. Prog Mater Sci, 2018, 91: 1

[135]

Yu HP, Zhu YJ, Xiong ZC, Lu BQ. Bioinspired fiberboard-and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chem Eng J, 2020, 399125666

[136]

Bentov S, Zaslansky P, Al-Sawalmih A, Masic A, Fratzl P, Sagi A, Berman A, Aichmayer B. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun, 2012, 3839

[137]

Mann S. Biomineralization: the form(id)able part of bioinorganic chemistry!. J Chem Soc Dalton. 1997: 3953.

[138]

Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature, 1993, 365: 499

[139]

Yu Z, Li X, Li X, Zheng B, Li D, Xu D, Wang F. Nacre-inspired metal-organic framework coatings reinforced by multiscale hierarchical cross-linking for integrated antifouling and anti-microbial corrosion. Adv Funct Mater, 2023, 332305995

[140]

Wu D, Zheng K, Yin W, Hu B, Yu M, Yu Q, Wei X, Deng J, Zhang C. Enhanced osteochondral regeneration with a 3D-printed biomimetic scaffold featuring a calcified interfacial layer. Bioact Mater, 2024, 36: 317

[141]

Zhang X, Cui M, Wang S, Han F, Xu P, Teng L, Zhao H, Wang P, Yue G, Zhao Y, Liu G, Li K, Zhang J, Liang X, Zhang Y, Liu Z, Zhong C, Liu W. Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nat Commun, 2022, 132731

[142]

Wang L, Xue B, Zhang X, Gao Y, Xu P, Dong B, Zhang L, Zhang L, Li L, Liu W. Extracellular matrix-mimetic intrinsic versatile coating derived from marine adhesive protein promotes diabetic wound healing through regulating the microenvironment. ACS Nano, 2024, 18: 14726

[143]

Chen Y, Zhou Y, Hu Z, Lu W, Li Z, Gao N, Liu N, Li Y, He J, Gao Q, Xie Z, Li J, He Y. Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett, 2024, 16: 34.

[144]

Li Q, Ye L, Leng Y, Yu K, Hu E, Lu F, Xie R, Jiang S, Gao H, Bao R, Dai F, Lan G. Nanofiber-based multifunctional microspheres for rapid hemostasis and microorganism removal of water. Adv Healthc Mater., 2024, 14: e2403679

[145]

Hong MS, Choi GM, Kim J, Jang J, Choi B, Kim JK, Jeong S, Leem S, Kwon HY, Hwang HB, Im HG, Park JU, Bae BS, Jin J. Biomimetic chitin–silk hybrids: an optically transparent structural platform for wearable devices and advanced electronics. Adv Funct Mater, 2018, 281705480

[146]

Yu S, Chen L, Xie Y, Feng Q, Chen C. Lignin/polysaccharide composite: a nature-made match toward multifunctional bio-based materials. Prog Mater Sci, 2025, 148101383

[147]

Huang D, Li R, Xu P, Li T, Deng R, Chen S, Zhang Q. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods. Chem Eng J, 2020, 402126237

[148]

Yao M, Liu B, Qin L, Du Z, Wang Z, Qin C, Liang C, Huang C, Yao S. Preparation of homogeneous lignin nanoparticles by efficient extraction of lignin and modification of its molecular structure using a functional deep eutectic solvent containing γ-valerolactone. Green Chem, 2024, 26: 4528

[149]

Sun D, Mo J, Liu W, Yan N, Qiu X. Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance. Adv Funct Mater, 2024, 34: 2403333

[150]

Li X, You X, Wang X, Kang J, Zhang HJ. Advanced lignin-based hydrogels with superior stiffness, toughness, and sensing capabilities. Adv Funct Mater, 2024, 35: 2415744.

[151]

Zhang C, Chen N, Zhao M, Zhong W, Wu WJ, Jin YC. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications. Int J Biol Macromol, 2024, 273: 133017

[152]

Beaucamp A, Muddasar M, Amiinu IS, Moraes Leite M, Culebras M, Latha K, Gutiérrez MC, Rodriguez-Padron D, del Monte F, Kennedy T, Ryan KM, Luque R, Titirici MM, Collins MN. Lignin for energy applications—state of the art, life cycle, technoeconomic analysis and future trends. Green Chem, 2022, 24: 8193

[153]

Chen C, Li Z, Mi R, Dai J, Xie H, Pei Y, Li J, Qiao H, Tang H, Yang B, Hu L. Rapid processing of whole bamboo with exposed, aligned nanofibrils toward a high-performance structural material. ACS Nano, 2020, 14: 5194

[154]

Li Z, Chen C, Xie H, Yao Y, Zhang X, Brozena A, Li J, Ding Y, Zhao X, Hong M, Qiao H, Smith LM, Pan X, Briber R, Shi SQ, Hu L. Sustainable high-strength macrofibres extracted from natural bamboo. Nat Sustain, 2022, 5: 235.

[155]

Xia Q, Chen C, Li T, He S, Gao J, Wang X, Hu L. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci Adv, 2021, 7: eabd7342

[156]

Xia Q, Chen C, Yao Y, He S, Wang X, Li J, Gao J, Gan W, Jiang B, Cui M, Hu L. In situ lignin modification toward photonic wood. Adv Mater, 2021, 33: 2001588

[157]

Yan M, Liu W, Fang Z, Yang D, Qiu X. Ultrastrong nanocomposites reinforced by cellulose nanofiber and lignosulfonate via swelling-assisted prestretching orientation. ACS Sustain Chem Eng, 2024, 12: 5753

[158]

Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J. Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J, 2019, 359: 459

[159]

Chen Z, Hu Y, Shi G, Zhuo H, Ali MA, Jamróz E, Zhang H, Zhong L, Peng X. Advanced flexible materials from nanocellulose. Adv Funct Mater, 2023, 332214245

[160]

Guan QF, Yang HB, Han ZM, Ling ZC, Yang KP, Yin CH, Yu SH. Plant cellulose nanofiber-derived structural material with high-density reversible interaction networks for plastic substitute. Nano Lett, 2021, 21: 8999

[161]

Jiang B, Yao Y, Liang Z, Gao J, Chen G, Xia Q, Mi R, Jiao M, Wang X, Hu L. Lignin-based direct ink printed structural scaffolds. Small, 2020, 16: 1907212

[162]

Sun H, Fang X, Zhu Y, Yu Z, Lu X, Sun J. Highly tough, degradable, and water-resistant bio-based supramolecular plastics comprised of cellulose and tannic acid. J Mater Chem A, 2023, 11: 7193

[163]

Wang T, Wang Y, Ji C, Li Y, Yang H. All-cellulose-based flexible photonic films. Adv Funct Mater, 2024, 342408464

[164]

Jadhav PS, Sarkar A, Ren S. Composition gradient cellulose–aerogel nanocomposites regulating thermal insulation. Small Sci, 2023, 3: 2300042

[165]

Zhang F, Chen X. Bioinspired strategies for stretchable conductors. Chem Res Chin Univ, 2023, 3930

[166]

Li Z, Li Z, Zhou S, Zhang J, Zong L. Biomimetic multiscale oriented PVA/NRL hydrogel enabled multistimulus responsive and smart shape memory actuator. Small, 2024, 20: 2311240

[167]

Nian G, Chen Z, Bao X, Tan MWM, Kutsovsky Y, Suo Z. Natural rubber with high resistance to crack growth. Nat Sustain, 2025, 8: 692.

[168]

An D, Cheng S, Zhang Z, Jiang C, Fang H, Li J, Liu Y, Wong CP. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections. Carbon, 2019, 155: 258

[169]

Xia K, Yao Z, Liu Z, Luo S, Xie H, Li X, Yao X, Liang G, Zhang P. Hierarchical ionic networks in polymer electrolyte boost high-voltage solid-state Li batteries with stable interfaces and long cycling. Nano Res Energy., 2025

[170]

Shi J, Wu Y, Zhang S, Tian Y, Yang D, Jiang Z. Bioinspired construction of multi-enzyme catalytic systems. Chem Soc Rev, 2018, 47: 4295

[171]

Xu Z, Qi J, Wang S, Liu X, Li M, Mann S, Huang X. Algal cell bionics as a step towards photosynthesis-independent hydrogen production. Nat Commun, 2023, 14: 1872

[172]

Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, Wun KS, Liu J, Nadarajan SP, Weng C, Ling H, Tay JK, Wang DY, Yao SQ, Hwang IY, Lee YS, Chang MW. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat Commun, 2024, 15: 4343

[173]

Kim HS, Noh MH, White EM, Kandefer MV, Wright AF, Datta D, Lim HG, Smiggs E, Locklin JJ, Rahman MA, Feist AM, Pokorski JK. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration. Nat Commun, 2024, 15: 3338

[174]

Chen B, Kang W, Sun J, Zhu R, Yu Y, Xia A, Yu M, Wang M, Han J, Chen Y, Teng L, Tian Q, Yu Y, Li G, You L, Liu Z, Dai Z. Programmable living assembly of materials by bacterial adhesion. Nat Chem Biol, 2022, 18: 289

[175]

Huang Y, Mu L, Zhao X, Han Y, Guo B. Bacterial growth-induced tobramycin smart release self-healing hydrogel for pseudomonas aeruginosa-infected burn wound healing. ACS Nano, 2022, 16: 13022

[176]

Son Y, Yang J, Kim W, Park W. Advanced bacteria-based biomaterials for environmental applications. Bioresour Technol, 2024, 414131646

[177]

Sarkar M, Maiti M, Mandal S, Xu S. Enhancing concrete resilience and sustainability through fly ash-assisted microbial biomineralization for self-healing: from waste to greening construction materials. Chem Eng J, 2024, 481148148

[178]

Dou R, Xie Y, Liu FX, Wang B, Xu F, Xiao K. In situ mycoremediation of acid rain and heavy metals co-contaminated soil through microbial inoculation with pleurotus ostreatus. Sci Total Environ, 2024, 912169020

[179]

Min J, Son Y, Jang I, Yi C, Park W. Managing two simultaneous issues in concrete repair: healing microcracks and controlling pathogens. Constr Build Mater, 2024, 416135125

[180]

Jung JH, Lee SY, Seo TS. In vivo synthesis of nanocomposites using the recombinant escherichia coli. Small, 2018, 14: 1803133.

[181]

Wang A, Zhang J, Razzari L, Liu H, Yu X, Jin X, Chen X, Zhang J, Zhao Z, Gao M. A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis. ACS Nano, 2020, 14: 13876

[182]

Zhang TQ, Liu J, Huang LB, Zhang XD, Sun YG, Liu XC, Bin DS, Chen X, Cao AM, Hu JS, Wan LJ. Microbial-phosphorus-enabled synthesis of phosphide nanocomposites for efficient electrocatalysts. J Am Chem Soc, 2017, 139: 11248

[183]

Kassem S, Van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Artificial molecular motors. Chem Soc Rev, 2017, 46: 2592

[184]

Tan J, Zhang X, Wang X, Xu C, Chang S, Wu H, Wang T, Liang H, Gao H, Zhou Y, Zhu Y. Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell, 2021, 184: 2665

[185]

Minamino T, Imada K, Namba K. Molecular motors of the bacterial flagella. Curr Opin Struct Biol, 2008, 18: 693

[186]

Feng Y, Ovalle M, Seale JSW, Lee CK, Kim DJ, Astumian RD, Stoddart JF. Molecular pumps and motors. J Am Chem Soc, 2021, 143: 5569

[187]

Ajaj Y, Mahmoud ZH, Obeed AN, Al-Salih M, Ahmed BA, Hassan EA, Falih MS, Nosratabadi M, Kianfar E. Molecular motors in nanobiotechnology: protein and dna based molecular motors: a review. Results Chem, 2024, 7101250

[188]

Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC, Erhardt M, Taylor NMI. Structure and function of stator units of the bacterial flagellar motor. Cell, 2020, 183: 244

[189]

Bruns CJ, Stoddart JF. Rotaxane-based molecular muscles. Acc Chem Res, 2014, 47: 2186

[190]

Cheng C, McGonigal PR, Schneebeli ST, Li H, Vermeulen NA, Ke C, Stoddart JF. An artificial molecular pump. Nat Nanotechnol, 2015, 10547

[191]

Jia H, Flommersfeld J, Heymann M, Vogel SK, Franquelim HG, Brückner DB, Eto H, Broedersz CP, Schwille P. 3D printed protein-based robotic structures actuated by molecular motor assemblies. Nat Mater, 2022, 21: 703

[192]

Zhang L, Qiu Y, Liu WG, Chen H, Shen D, Song B, Cai K, Wu H, Jiao Y, Feng Y, Seale JSW, Pezzato C, Tian J, Tan Y, Chen XY, Guo QH, Stern CL, Philp D, Astumian RD, Goddard WA, Stoddart JF. An electric molecular motor. Nature, 2023, 613: 280

[193]

Boursalian GB, Nijboer ER, Dorel R, Pfeifer L, Markovitch O, Blokhuis A, Feringa BL. All-photochemical rotation of molecular motors with a phosphorus stereoelement. J Am Chem Soc, 2020, 142: 16868

[194]

Sheng J, Danowski W, Sardjan AS, Hou J, Crespi S, Ryabchun A, Domínguez MP, Jan Buma W, Browne WR, Feringa BL. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat Chem, 2024, 16: 1330

[195]

Gantenbein S, Colucci E, Käch J, Trachsel E, Coulter FB, Rühs PA, Masania K, Studart AR. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat Mater, 2023, 22: 128

[196]

He D, Wang T, Lu J, Liu Y, Gu W, Liu X, Fu C, Qin Y, Li J, Liu X, Wang C, Pang H. Protein-guided biomimetic calcification constructing 3D nitrogen-rich core-shell structures realizing high-performance lithium-sulfur batteries. Adv Mater, 2025, 37: 2416268

[197]

Berger O, Battistella C, Chen Y, Oktawiec J, Siwicka ZE, Tullman-Ercek D, Wang M, Gianneschi NC. Mussel adhesive-inspired proteomimetic polymer. J Am Chem Soc, 2022, 144: 4383

[198]

Li S, Liu A, Qiu W, Wang Y, Liu G, Liu J, Shi Y, Li Y, Li J, Cai W, Park C, Ye M, Guo W. An all-protein multisensory highly bionic skin. ACS Nano, 2024, 18: 4579

[199]

Wei W, Petrone L, Tan Y, Cai H, Israelachvili JN, Miserez A, Waite JH. An underwater surface-drying peptide inspired by a mussel adhesive protein. Adv Funct Mater, 2016, 26: 3496

[200]

Kronqvist N, Sarr M, Lindqvist A, Nordling K, Otikovs M, Venturi L, Pioselli B, Purhonen P, Landreh M, Biverstål H, Toleikis Z, Sjöberg L, Robinson CV, Pelizzi N, Jörnvall H, Hebert H, Jaudzems K, Curstedt T, Rising A, Johansson J. Efficient protein production inspired by how spiders make silk. Nat Commun, 2017, 8: 15504

[201]

Liu H, Zhou Y, Liu Y, Wang Z, Zheng Y, Peng C, Tian M, Zhang Q, Li J, Tan H, Fu Q, Ding M. Protein-inspired polymers with metal-site-regulated ordered conformations. Angew Chem Int Ed Engl, 2023, 62e202213000

[202]

Wu Q, Liu H, Xiong H, Hou Y, Peng Y, Zhao L, Wu J. Thermomechanically stable supramolecular elastomers inspired by heat shock proteins. Mater Horiz, 2023, 11: 1014.

[203]

Xia L, Li L, Xiao Y, Xiao F, Ji W, Jiang S, Wang H. Ethylene-vinyl alcohol copolymer/gelatin/cellulose acetate bionic trilayer fibrous membrane for moisture-adjusting. Carbohydr Polym, 2023, 300120269

[204]

Kim D, Lee JU, Kim GH. Biomimetic gelatin/HA biocomposites with effective elastic properties and 3D-structural flexibility using a 3D-printing process. Addit Manuf, 2020, 36101616

[205]

Wang L, Wang K, Yang M, Yang X, Li D, Liu M, Niu C, Zhao W, Li W, Fu Q, Zhang K. Urethral microenvironment adapted sodium alginate/gelatin/reduced graphene oxide biomimetic patch improves scarless urethral regeneration. Adv Sci, 2024, 112302574

[206]

Yoo SC, Park YK, Park C, Ryu H, Hong SH. Biomimetic artificial nacre: boron nitride nanosheets/gelatin nanocomposites for biomedical applications. Adv Funct Mater, 2018, 28: 1805948.

[207]

Ma L, Wang X, Zhou Y, Ji X, Cheng S, Bian D, Fan L, Zhou L, Ning C, Zhang Y. Biomimetic Ti–6Al–4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration. Bioact Mater, 2021, 6: 3437

[208]

Peng Y, Sun F, Xiao C, Iqbal MI, Sun Z, Guo M, Gao W, Hu X. Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl Mater Interfaces, 2021, 13: 54386-54395.

[209]

Liu A, Chen L, Qi L, Huang J, Zou Y, Hu Z, Yu L, Zhong Z, Ye Q, Chen C. Biosafe, rapid, and ultrahigh-capacity endotoxin purification in blood by a sustainable and recyclable mof-functionalized chitin microsphere adsorbent. SusMat, 2024, 4e235

[210]

Wu Y, Chen S, Wu J, Liu F, Chen C, Ding B, Zhou X, Deng H. Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. Sci Adv, 2024, 10adn8662

[211]

Rumney RMH, Robson SC, Kao AP, Barbu E, Bozycki L, Smith JR, Cragg SM, Couceiro F, Parwani R, Tozzi G, Stuer M, Barber AH, Ford AT, Górecki DC. Biomimetic generation of the strongest known biomaterial found in limpet tooth. Nat Commun, 2022, 133753

[212]

Jin J, Hassanzadeh P, Perotto G, Sun W, Brenckle MA, Kaplan D, Omenetto FG, Rolandi M. A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix. Adv Mater, 2013, 25: 4482

[213]

Chen Z, Lu M, Qian Y, Yang Y, Liu J, Lin Z, Yang D, Lu J, Qiu X. Ultra-low dosage lignin binder for practical lithium–sulfur batteries. Adv Energy Mater, 2023, 132300092

[214]

Jia H, Liu J, Liu B, Kuphal R, Mottini V, Monday P, Ball M, Li J, Nejad M, Fang C. Lignin-based separators for lithium-ion batteries via a dry fibrillation method. Adv Mater, 2025, 372419694

[215]

Meng T, Ding Y, Liu Y, Xu L, Mao Y, Gelfond J, Li S, Li Z, Salipante PF, Kim H, Zhu JY, Pan X, Hu L. In situ lignin adhesion for high-performance bamboo composites. Nano Lett, 2023, 23: 8411

[216]

Lin A, Liu Y, Zhu X, Chen X, Liu J, Zhou Y, Qin X, Liu J. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano, 2019, 13: 13965

[217]

Hu H, Hua SY, Lin X, Lu F, Zhang W, Zhou L, Cui J, Wang R, Xia J, Xu F, Chen X, Zhou M. Hybrid biomimetic membrane coated particles-mediated bacterial ferroptosis for acute MRSA pneumonia. ACS Nano, 2023, 17: 11692

[218]

Gao N, Bai P, Fang C, Wu W, Bi C, Wang J, Shan A. Biomimetic peptide nanonets: exploiting bacterial entrapment and macrophage rerousing for combatting infections. ACS Nano, 2024, 18: 25446

[219]

Ni D, Qing S, Ding H, Yue H, Yu D, Wang S, Luo N, Su Z, Wei W, Ma G. Biomimetically engineered demi-bacteria potentiate vaccination against cancer. Adv Sci, 2017, 4: 1700083.

[220]

Huang J, Hong X, Chen S, He Y, Xie L, Gao F, Zhu C, Jin X, Yan H, Ye Y, Shao M, Du X, Feng G. Biomimetic metal–organic framework gated nanoplatform for sonodynamic therapy against extensively drug resistant bacterial lung infection. Adv Sci, 2024, 11: 2402473

[221]

Lino V, Castaldo R, Gentile G, Manini P. Reusable melanin-based biosorbents for efficient methylene blue removal: the new frontier of fungi-inspired allomelanin coatings for sustainable water remediation processes. Mater Today Sustain, 2023, 21: 100283

[222]

Xu C, Ojeda M, Arancon RAD, Romero AA, Domingo JL, Gómez M, Blanco J, Luque R. Bioinspired porous zno nanomaterials from fungal polysaccharides: advanced materials with unprecedented low toxicity in vitro for human cells. ACS Sustain Chem Eng, 2015, 3: 2716

[223]

Zhang D, Shi C, Cong Z, Chen Q, Bi Y, Zhang J, Ma K, Liu S, Gu J, Chen M, Lu Z, Zhang H, Xie J, Xiao X, Liu L, Jiang W, Shao N, Chen S, Zhou M, Shao X, Dai Y, Li M, Zhang L, Liu R. Microbial metabolite inspired β-peptide polymers displaying potent and selective antifungal activity. Adv Sci, 2022, 92104871

[224]

Wang H, Liu J, Wu Z, Chen X, Jin K, Tao J, Wang B. Bioinspired strong and tough layered bulk composites via mycelial interface anchoring strategy. Adv Sci, 2025, 122413226

[225]

Wang P, Guo YJ, Chen WP, Duan H, Ye H, Yao HR, Yin YX, Cao FF. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res, 2023, 16: 3832

[226]

Simões MF, Maiorano AE, dos Santos JG, Peixoto L, de Souza RFB, Neto AO, Brito AG, Ottoni CA. Microbial fuel cell-induced production of fungal laccase to degrade the anthraquinone dye Remazol Brilliant Blue R. Environ Chem Lett, 2019, 17: 1413.

[227]

Chai L, Wang J, Wang H, Zhang L, Yu W, Mai L. Porous carbonized graphene-embedded fungus film as an interlayer for superior Li-S batteries. Nano Energy, 2015, 17: 224

[228]

Ruiz D, Michel VF, Niederberger M, Lizundia E. Chitin nanofibrils from fungi for hierarchical gel polymer electrolytes for transient zinc-ion batteries with stable Zn electrodeposition. Small, 2023, 19: 2303394

[229]

Kim SH, Kearns FL, Rosenfeld MA, Casalino L, Papanikolas MJ, Simmerling C, Amaro RE, Freeman R. GlycoGrip: cell surface-inspired universal sensor for betacoronaviruses. ACS Cent Sci, 2022, 8: 22

[230]

Zhao W, Yang Y, Song L, Kang T, Du T, Wu Y, Xiong M, Luo L, Long J, Men K, Zhang L, Chen X, Huang M, Gou M. A vesicular stomatitis virus-inspired DNA nanocomplex for ovarian cancer therapy. Adv Sci, 2018, 5: 1700263.

[231]

Lou Z, Shi Y, Guo X, Jin Z, Huang J, Hu Y, Liu X, Zhu J, Kuang R, You J. Chronological management of adjuvant effect for optimized MRNA vaccine inspired by natural virus infection. ACS Nano, 2024, 18: 19694

[232]

Katzir I, Haimov E, Lampel A. Tuning the dynamics of viral-factories-inspired compartments formed by peptide–RNA liquid–liquid phase separation. Adv Mater, 2022, 34: 2206371

[233]

Tian Y, Zhou M, Shi H, Gao S, Xie G, Zhu M, Wu M, Chen J, Niu Z. Integration of cell-penetrating peptides with rod-like bionanoparticles: virus-inspired gene-silencing technology. Nano Lett, 2018, 18: 5453

[234]

Navarro S, Díaz-Caballero M, Peccati F, Roldán-Martín L, Sodupe M, Ventura S. Amyloid fibrils formed by short prion-inspired peptides are metalloenzymes. ACS Nano, 2023, 17: 16968

[235]

Cheng Y, Yumul RC, Pun SH. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew Chem Int Ed, 2016, 55: 12013

[236]

Deng K, Li Y, Liang X, Shen C, Zeng Z, Xu X. Virus-inspired nanoparticles as versatile antibacterial carriers for antibiotic delivery against gram-negative and gram-positive bacteria. Chin Chem Lett, 2022, 331619

[237]

Qiao C, Zhang R, Wang Y, Jia Q, Wang X, Yang Z, Xue T, Ji R, Cui X, Wang Z. Rabies virus-inspired metal–organic frameworks (MOFs) for targeted imaging and chemotherapy of glioma. Angew Chem Int Ed, 2020, 59: 16982

[238]

Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. Plant Cell, 2024, 364014

[239]

Pottosin I, Shabala S. Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Mol Plant, 2016, 9: 356

[240]

Xuan M, Li J. Photosystem II-based biomimetic assembly for enhanced photosynthesis. Natl Sci Rev, 2021, 8nwab051

[241]

Mahiny M, Lotfi H, Beigmohammadi M, Pooriraj M, Heydari M, Shirzad A, Mahfouzi H, Nazeeruddin MK, Mohd Yusoff ARB, Movla H. Pioneering non-thermal plasma as a defect passivator: a new Frontier in ambient metal halide perovskite synthesis. Mater Horizons, 2025, 12: 1826

[242]

Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari ZA, Dhayal M, Yang P, Nazeeruddin MK, Tavakoli MM. ZnO nanostructures—future Frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev, 2024, 515: 215942

[243]

Grätzel M. The light and shade of perovskite solar cells. Nat Mater, 2014, 13: 838

[244]

Liu LN, Bracun L, Li M. Structural diversity and modularity of photosynthetic RC−LH1 complexes. Trends Microbiol, 2024, 32: 38

[245]

Kuang T. A breakthrough of artificial photosynthesis. Natl Sci Rev, 2016, 32

[246]

Cai M, Wu Z, Li Z, Wang L, Sun W, Tountas AA, Li C, Wang S, Feng K, Xu AB, Tang S, Tavasoli A, Peng M, Liu W, Helmy AS, He L, Ozin GA, Zhang X. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat Energy, 2021, 6: 807

[247]

Tétreault N, Arsenault É, Heiniger LP, Soheilnia N, Brillet J, Moehl T, Zakeeruddin S, Ozin GA, Grätzel M. High-efficiency dye-sensitized solar cell with three-dimensional photoanode. Nano Lett, 2011, 11: 4579

[248]

Kalyanasundaram K, Graetzel M. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Curr Opin Biotechnol, 2010, 21: 298

[249]

Kay A, Grátzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem, 1993, 97: 6272

[250]

Ren YY, Wang F. Supramolecular artificial photosynthetic systems: from assembly to bionics. Curr Opin Green Sustain Chem, 2023, 41100808

[251]

Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334: 645

[252]

Zhu X, Du C, Gao B, He B. Artificial cellulosic leaf with adjustable enzymatic CO2 sequestration capability. Nat Commun, 2024, 15: 4898

[253]

Lin X, Guo X, Qiu C, Wang H, Zheng L, Zhang Z, Yuan Y, Sun W, Wu Y. A Reversibly flame-retardant thermal regulation material inspired by leaf transpiration. Chem Eng J, 2023, 470144221

[254]

Gao S, Zhang Q, Su X, Wu X, Zhang XG, Guo Y, Li Z, Wei J, Wang H, Zhang S, Wang J. Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction. J Am Chem Soc, 2023, 145: 9520

[255]

Kumar A, Hasija V, Sudhaik A, Raizada P, Van Le Q, Singh P, Pham TH, Kim TY, Ghotekar S, Nguyen VH. Artificial leaf for light-driven CO2 reduction: basic concepts, advanced structures and selective solar-to-chemical products. Chem Eng J, 2022, 430133031

[256]

Wen N, Jiang Q, Liu D. Polymer semiconductor films and bacteria hybrid artificial bio-leaves. Sci Adv, 2024, 10eadp8567

[257]

Zhen C, Zhu H, Chen R, Zheng Z, Fan F, Li B, Xu X, Du Y, Cheng HM, Domen K, Liu G. An artificial leaf with patterned photocatalysts for sunlight-driven water splitting. J Am Chem Soc, 2024, 146: 28482

[258]

Pan X, Li W, Fang Y, Zhang H, Xiao Y, Molokeev M, Ping Jiang S, Liu Y, Lei B. Semi-artificial photosynthetic system based on TiO2/chlorophyll composite and microalgae for N2 fixation. Chem Eng J, 2023, 475146179

[259]

Fang X, Sokol KP, Heidary N, Kandiel TA, Zhang JZ, Reisner E. Structure-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett, 2019, 19: 1844

[260]

Zhang JZ, Reisner E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat Rev Chem, 2020, 46

[261]

Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. Adv Mater, 2024, 362305285

[262]

Liu B, Giannis A, Zhang J, Chang VWC, Wang JY. Air stripping process for ammonia recovery from source-separated urine: modeling and optimization. J Chem Technol Biotechnol, 2015, 90: 2208

[263]

Xiao S, Zhang D, Pan D, Zhu W, Liu P, Cai Y, Li G, Li H. A chloroplast structured photocatalyst enabled by microwave synthesis. Nat Commun, 2019, 10: 1570

[264]

Yu S, Hou Y, Jin Q, Zhu L, Chen S. Biomimetic chlorophyll derivatives-based photocatalytic fabric for highly efficient O2 production via CO2 and H2O photoreaction. Chem Eng J, 2023, 472145103

[265]

Zhen C, Chen X, Chen R, Fan F, Xu X, Kang Y, Guo J, Wang L, Lu GQ, Domen K, Cheng HM, Liu G. Liquid metal-embraced photoactive films for artificial photosynthesis. Nat Commun, 2024, 151672

[266]

Emeji IC, Ama OM, Aigbe UO, Khoele K, Osifo PO, Ray SS. Electrochemical cells. Engineering materials, 2020, Berlin. Springer Science and Business Media B.V65-84

[267]

Liu M, Yang W, Xiao R, Qin Y, Tan R, Chen Y, Gu W, Hu L, Lin Y, Zhu C. Anisotropic dual S-scheme heterojunctions mimic natural photosynthetic system for boosting photoelectric response. Angew Chem Int Ed, 2024, 63e202407481

[268]

Sapru S, Dill MN, Simmons CS. Biomaterial design inspired by regenerative research organisms. ACS Biomater Sci Eng, 2023, 9: 3860

[269]

Rhoads TW, Anderson RM. Taking the long view on metabolism. Science, 2021, 373: 738

[270]

Li P, Zhong Y, Wang X, Hao J. Enzyme-regulated healable polymeric hydrogels. ACS Cent Sci, 2020, 6: 1507

[271]

Zhao Z, Xia X, Liu J, Hou M, Liu Y, Zhou Z, Xu Y, He F, Yang H, Zhang Y, Ruan C, Zhu X. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging. Bioact Mater, 2024, 32: 319

[272]

Wang S, Urban MW. Self-healing polymers. Nat Rev Mater, 2020, 5: 562

[273]

Nakahata M, Takashima Y, Yamaguchi H, Harada A. Redox-responsive self-healing materials formed from host-guest polymers. Nat Commun, 2011, 2: 511

[274]

Kim JT, Kim BK, Kim EY, Kwon SH, Jeong HM. Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. Eur Polym J, 2013, 49: 3889

[275]

Zhao W, Zheng Y, Huang A, Jiang M, Wang L, Zhang Q, Jiang W. Metal-halogen interactions inducing phase separation for self-healing and tough ionogels with tunable thermoelectric performance. Adv Mater, 2024, 36: 2402386

[276]

Chen C, Chen S, Guo Z, Hu W, Chen Z, Wang J, Hu J, Guo J, Yang L. Highly efficient self-healing materials with excellent shape memory and unprecedented mechanical properties. J Mater Chem A, 2020, 8: 16203

[277]

Fu Q, Yan Q, Lv L, Fu H. Magnetic self-healing nanocomposite material introduced by thiol-epoxy click reaction. React Funct Polym, 2020, 157104744

[278]

Yang Y, Li R, Gao C, Qin Z, Mi HY, Dong B, Jing X, Liu C, Shen C. Impact-resistant, high-toughness, self-healable elastomers with physical-chemical dual-crosslinking networks for efficient energy absorption. Appl Mater Today, 2024, 41102522

[279]

Xu JH, Li YK, Liu T, Wang D, Sun FY, Hu P, Wang L, Chen JY, Wang XB, Yao BW, Fu JJ. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv Mater, 2023, 35: 2300937

[280]

Hamada S, Yancey KG, Pardo Y, Gan M, Vanatta M, An D, Hu Y, Derrien TL, Ruiz R, Liu P, Sabin J, Luo D. Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Sci Robot, 2019, 4eaaw3512

[281]

Shklyaev OE, Balazs AC. Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality. Nat Nanotechnol, 2024, 19: 146

[282]

Fusi G, Del Giudice D, Skarsetz O, Di Stefano S, Walther A. Autonomous soft robots empowered by chemical reaction networks. Adv Mater, 2023, 352209870

[283]

Lavrador P, Moura BS, Almeida-Pinto J, Gaspar VM, Mano JF. Engineered nascent living human tissues with unit programmability. Nat Mater, 2024, 24: 143

[284]

Xiao H, Xu L, Xiao Z, Huang H, Gan Y, Pan G, Tao X, Xia Y, Xia X, Zhang W. Biological metabolism synthesis of metal oxides nanorods from bacteria as a biofactory toward high-performance lithium-ion battery anodes. Small, 2019, 15e1902032

[285]

Evans AA, Cheung E, Nyberg KD, Rowat AC. Wrinkling of milk skin is mediated by evaporation. Soft Matter, 2017, 13: 1056

[286]

Li C, Yu Y, Li H, Lin H, Cui H, Pan Y, Zhang R, Song Y, Shum HC. Heterogeneous self-assembly of a single type of nanoparticle modulated by skin formation. ACS Nano, 2023, 17: 11645

[287]

Zhu Y, Guo Y, Cao K, Zeng S, Jiang G, Liu Y, Cheng W, Bai W, Weng X, Chen W, Zhao D, Yu H, Yu G. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat Synth, 2023, 2: 864

[288]

Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid–liquid phase separation for higher-order structures and functions. Commun Chem, 2024, 7: 79

[289]

Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury MK, Yao S, Wang Z. Directional transport of high-temperature janus droplets mediated by structural topography. Nat Phys, 2016, 12: 606

[290]

Li A, Li H, Lyu S, Zhao Z, Xue L, Li Z, Li K, Li M, Sun C, Song Y. Tailoring vapor film beneath a leidenfrost drop. Nat Commun, 2023, 14: 2646

[291]

Novoselov KS, et al. . Electric field effect in atomically thin carbon films. Science, 2016, 306: 666.

[292]

Sozen Y, Riquelme JJ, Xie Y, Munuera C, Castellanos-Gomez A. High-throughput mechanical exfoliation for low-cost production of van der waals nanosheets. Small Methods, 2023, 72300326

[293]

Chen W, Yan L. Centimeter-sized dried foam films of graphene: preparation, mechanical and electronic properties. Adv Mater, 2012, 24: 6229

[294]

He X, Yang R, Xu C, Zhao Z, Cheng YF, Egberts P, Zeng H, Lu Q. Blowing-inspired ex situ preparation of ultrathin hydrogel coatings for visibly monitoring humidity and alkaline gas. Nanoscale, 2023, 15: 13952

[295]

Gao J, Qin H, Wang F, Liu L, Tian H, Wang H, Wang S, Ou J, Ye Y, Peng F, Tu Y. Hyperthermia-triggered biomimetic bubble nanomachines. Nat Commun, 2023, 14: 4867

[296]

Chen Z, Wang X, Liu J, Liu K, Li S, Wu M, Wu Z, Wang Z, Shi Y, Ruan C. A stone-cottage-inspired printing strategy to build microsphere patterned scaffolds for accelerated bone regeneration. Adv Funct Mater, 2024, 352417836

[297]

Yi S, Wang L, Chen Z, Wang J, Song X, Liu P, Zhang Y, Luo Q, Peng L, Wu Z, Guo CF, Jiang L. High-throughput fabrication of soft magneto-origami machines. Nat Commun, 2022, 13: 4177

[298]

Zhu Y, Birla M, Oldham KR, Filipov ET. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv Funct Mater, 2020, 30: 2003741

[299]

Peng X, Wu S, Sun X, Yue L, Montgomery SM, Demoly F, Zhou K, Zhao RR, Qi HJ. 4D printing of freestanding liquid crystal elastomers via hybrid additive manufacturing. Adv Mater, 2022, 342204890

[300]

Misseroni D, Pratapa PP, Liu K, Kresling B, Chen Y, Daraio C, Paulino GH. Origami engineering. Nat Rev Methods Primers, 2024, 440

[301]

Meloni M, Cai J, Zhang Q, Sang-Hoon Lee D, Li M, Ma R, Parashkevov TE, Feng J. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Adv Sci, 2021, 82000636

[302]

Masana R, Dalaq AS, Khazaaleh S, Daqaq MF. The kresling origami spring: a review and assessment. Smart Mater Struct, 2024, 33043002

[303]

Tang Z, Yang K, Wang H, Cui Z, Jin X, Peng Y, Liu P. Bio-inspired soft pneumatic actuator based on a kresling-like pattern with a rigid skeleton. J Adv Res, 2024, 63: 91

[304]

Wang X, Qu H, Guo S. Tristable property and the high stiffness analysis of kresling pattern origami. Int J Mech Sci, 2023, 256108515

[305]

Taghavi M, Helps T, Rossiter J. Electro-ribbon actuators and electro-origami robots. Sci Robot, 2018, 3eaau9795

[306]

Ze Q, Wu S, Nishikawa J, Dai J, Sun Y, Leanza S, Zemelka C, Novelino LS, Paulino GH, Zhao RR. Soft robotic origami crawler. Sci Adv, 2022, 8: eabm7834

[307]

Wu S, Ze Q, Dai J, Udipi N, Paulino GH, Zhao R. Stretchable origami robotic arm with omnidirectional bending and twisting. Proc Natl Acad Sci USA, 2021, 118e2110023118

[308]

Wang C, Guo H, Liu R, Deng Z, Chen Y, You Z. Reconfigurable origami-inspired multistable metamorphous structures. Sci Adv, 2024, 10eadk8662

[309]

Song Z, Zhu JF, Wang X, Zhang R, Min P, Cao W, He Y, Han J, Wang T, Zhu J, Wu L, Qiu CW. Origami metamaterials for ultra-wideband and large-depth reflection modulation. Nat Commun, 2024, 15: 3181

[310]

Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, Cohen I. Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 2014, 345: 647

[311]

Fang H, Chu SCA, Xia Y, Wang KW. Programmable self-locking origami mechanical metamaterials. Adv Mater, 2018, 301706311

[312]

Zadpoor AA. Mechanical meta-materials. Mater Horiz, 2016, 3: 371

[313]

Yu X, Zhou J, Liang H, Jiang Z, Wu L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci, 2018, 94: 114.

[314]

Clausen A, Wang F, Jensen JS, Sigmund O, Lewis JA. Topology optimized architectures with programmable poisson’s ratio over large deformations. Adv Mater, 2015, 27: 5523

[315]

Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K. 3D soft metamaterials with negative Poisson’s ratio. Adv Mater, 2013, 25: 5044

[316]

Wen G, Chen G, Long K, Wang X, Liu J, Xie YM. Stacked-origami mechanical metamaterial with tailored multistage stiffness. Mater Des, 2021, 212110203

[317]

Ye H, Liu Q, Cheng J, Li H, Jian B, Wang R, Sun Z, Lu Y, Ge Q. Multimaterial 3D printed self-locking thick-panel origami metamaterials. Nat Commun, 2023, 141607

[318]

Lee DY, Kim JK, Sohn CY, Heo JM, Cho KJ. High-load capacity origami transformable wheel. Sci Robot, 2021

[319]

Surjadi JU, Aymon BFG, Carton M, Portela CM. Double-network-inspired mechanical metamaterials. Nat Mater, 2025, 24: 945

[320]

Guo X, Ni X, Li J, Zhang H, Zhang F, Yu H, Wu J, Bai Y, Lei H, Huang Y, Rogers JA, Zhang Y. Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion. Adv Mater, 2021, 332004919

[321]

Boatti E, Vasios N, Bertoldi K. Origami metamaterials for tunable thermal expansion. Adv Mater, 2017, 291700360

[322]

Wan S, Chen Y, Huang C, Huang Z, Liang C, Deng X, Cheng Q. Scalable ultrastrong mxene films with superior osteogenesis. Nature, 2024, 634: 1103

[323]

Hao B, Zhang Y, Si H, Jiang Z, Li C, Zhang Y, Zhang J, Gong C. Multiscale design of dielectric composites for enhanced microwave absorption performance at elevated temperatures. Adv Funct Mater, 2025, 35: 2423897

[324]

Hu Z, Wei Z, Wang K, Chen Y, Zhu R, Huang G, Hu G. Engineering zero modes in transformable mechanical metamaterials. Nat Commun, 2023, 14: 1266

[325]

Wu L, Pasini D. Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials. Nat Commun, 2024, 153087

[326]

Huang S, Liu Y, Zhao Y, Ren Z, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater, 2019, 29: 1805924.

[327]

Kim MS, Almuslem AS, Babatain W, Bahabry RR, Das UK, El-Atab N, Ghoneim M, Hussain AM, Kutbee AT, Nassar J, Qaiser N, Rojas JP, Shaikh SF, Torres Sevilla GA, Hussain MM. Beyond flexible: unveiling the next era of flexible electronic systems. Adv Mater, 2024, 36: 2406424

[328]

Peng C, Chen Y, Yang B, Jiang Z, Liu Y, Liu Z, Zhou L, Tang L. Recent advances of soft actuators in smart wearable electronic-textile. Adv Mater Technol, 2024, 92400079

[329]

Zhang N, Huang F, Zhao S, Lv X, Zhou Y, Xiang S, Xu S, Li Y, Chen G, Tao C, Nie Y, Chen J, Fan X. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter, 2020, 2: 1260.

[330]

Wang T, Meng J, Zhou X, Liu Y, He Z, Han Q, Li Q, Yu J, Li Z, Liu Y, Zhu H, Sun Q, Zhang DW, Chen P, Peng H, Chen L. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun, 2022, 137432

[331]

Zhu X, Wu K, Xie X, Anderson SW, Zhang X. A robust near-field body area network based on coaxially-shielded textile metamaterial. Nat Commun, 2024, 15: 6589

[332]

Song M, Moon J, Yong H, Song H, Park J, Hur J, Kim D, Park K, Jung S, Kim G, Lee S, Heo D, Cha K, Hwang PTJ, Hong J, Lee G, Lee S. Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics. Npj Flex Electron, 2024, 8: 76.

[333]

Peng L, Sheng H, Wang T, Zeng D, Zhang Y, Shi J, Zhou T, Yang J. Flexible, sweat-resistant electrophoretic fibers for next-gen wearable displays. Adv Fiber Mater., 2025

[334]

Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240

[335]

Cho S, Chang T, Yu T, Gong SL, Lee CH. Machine embroidery of light-emitting textiles with multicolor electroluminescent threads. Sci Adv, 2024, 10eadk4295

[336]

Chow L, Zhang Q, Huang X, Zhang J, Zhou J, Zhu B, Li J. Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring. Adv Mater, 2024, 347: 2406798

[337]

Chen W, Tong D, Meng L, Tan B, Lan R, Zhang Q, Yang H, Wang C, Liu K. Knotted artificial muscles for bio-mimetic actuation under deepwater. Adv Mater, 2024, 36: 2400763

[338]

Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev, 2024, 53: 8790

[339]

Liu W, Zhang R, Duan G, Zhang L, Li Y, Yang L. Bio-inspired and multifunctional polyphenol-coated textiles. Adv Fiber Mater, 2024, 6: 952

[340]

Wang D, Maharjan S, Kuang X, Wang Z, Mille LS, Tao M, Yu P, Cao X, Lian L, Lv L, He JJ, Tang G, Yuk H, Ozaki CK, Zhao X, Zhang YS. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv, 2022, 8: eabq6900

[341]

Ye T, Chai M, Wang Z, Shao T, Liu J, Shi X. 3D-printed hydrogels with engineered nanocrystalline domains as functional vascular constructs. ACS Nano, 2024, 18: 25765

[342]

Fang Y, Guo Y, Wu B, Liu Z, Ye M, Xu Y, Ji M, Chen L, Lu B, Nie K, Wang Z, Luo J, Zhang T, Sun W, Xiong Z. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater, 2023, 35: 2205082

[343]

Stankey PP, Kroll KT, Ainscough AJ, Reynolds DS, Elamine A, Fichtenkort BT, Uzel SGM, Lewis JA. Embedding biomimetic vascular networks via coaxial sacrificial writing into functional tissue. Adv Mater, 2024, 362401528

[344]

Sun FY, Liu LF, Liu T, Wang XB, Qi Q, Hang ZS, Chen K, Xu JH, Fu JJ. Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nat Commun, 2023, 14130

[345]

Chen Y, Valenzuela C. Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter, 2025, 8101904

[346]

Yao M, Richter O, Zhao G, Qiao N, Xing Y, Wang D, Hu T, Fang W, Demirci T, De Marchi M, Deng L, Yan T, Nielsen C, Sheik S, Wu C, Tian Y, Xu B, Li G. Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip. Nat Commun, 2024, 154464

[347]

Garcia-Cortadella R, Schäfer N, Cisneros-Fernandez J, L, Illa X, Schwesig G, Moya A, Santiago S, Guirado G, Villa R, Sirota A, Serra-Graells F, Garrido JA, Guimerà-Brunet A. Switchless multiplexing of graphene active sensor arrays for brain mapping. Nano Lett, 2020, 20: 3528

[348]

Le Floch P, Li Q, Lin Z, Zhao S, Liu R, Tasnim K, Jiang H, Liu J. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. Adv Mater, 2022, 34: 2106829.

[349]

Wang X, Sun X, Gan D, Soubrier M, Chiang HY, Yan L, Li Y, Li J, Yu S, Xia Y, Wang K, Qin Q, Jiang X, Han L, Pan T, Xie C, Lu X. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter, 2022, 5: 1204

[350]

Assi DS, Huang H, Karthikeyan V, Theja VCS, de Souza MM, Roy VAL. Topological quantum switching enabled neuroelectronic synaptic modulators for brain computer interface. Adv Mater, 2024, 362306254

[351]

Cho Y, Jeong HH, Shin H, Pak CJ, Cho J, Kim Y, Kim D, Kim T, Kim H, Kim S, Kwon S, Hong JP, Suh HP, Lee S. Hybrid bionic nerve interface for application in bionic limbs. Adv Sci, 2023, 10: 2303728

[352]

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, Van Der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 2012, 485: 372

[353]

Patel SR, Lieber CM. Precision electronic medicine in the brain. Nat Biotechnol, 2019, 371007

[354]

Tang X, Shen H, Zhao S, Li N, Liu J. Flexible brain–computer interfaces. Nat Electron, 2023, 6109

[355]

Kim HJ, Choi BH, Jun SH, Cha HJ. Sandcastle worm-inspired blood-resistant bone graft binder using a sticky mussel protein for augmented in vivo bone regeneration. Adv Healthc Mater, 2016, 5: 3191

[356]

Ye Q, Han Y, Zhou W, Shi SQ, Xie X, Gao Q, Zeng L, Li J. Sandcastle worm-inspired phytic acid and magnesium oxychloride cement copolymerization for performance enhancement. J Hazard Mater, 2021, 404123992

[357]

Tang H, Chen Q, Ke X, Wang H, Li M, Xie J, Luo J, Li J. Bioinspired by Sandcastle Worm Glue: an underwater reversible adhesive modulated by pH environments based on urushiol. Ind Eng Chem Res, 2023, 62: 19690

[358]

Chen Y, Liao S, Mensah A, Wang Q, Wei Q. Hydrogel transformed from sandcastle-worm-inspired powder for adhering wet adipose surfaces. J Colloid Interface Sci, 2023, 646: 472

[359]

Sanfilippo R, Rosso A, Mastandrea A, Viola A, Deias C, Guido A. Sabellaria alveolata sandcastle worm from the mediterranean sea: new insights on tube architecture and biocement. J Morphol, 2019, 280: 1839

[360]

Lin YX, Fu T, Guo DM, Tang YL, He JH, Liu C, Wu SG, Liu BW, Chen L, Wang YZ. A sandcastle-worm-inspired strategy toward antimicrobial fouling and fireproof composite. ACS Mater Lett, 2024, 6: 627

[361]

Zhang D, Liu J, Chen Q, Jiang W, Wang Y, Xie J, Ma K, Shi C, Zhang H, Chen M, Wan J, Ma P, Zou J, Zhang W, Zhou F, Liu R. A Sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat Commun, 2021, 12: 6331

[362]

Saleh MS, Hu C, Panat R. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci Adv, 2017, 31601986

[363]

Hu S, Cao X, Reddyhoff T, Puhan D, Huang W, Shi X, Peng Z, Dini D. Three-dimensional printed surfaces inspired by bi-gaussian stratified plateaus. ACS Appl Mater Interfaces, 2019, 11: 20528

[364]

Moffett KB, Gorelick SM. Alternative stable states of tidal marsh vegetation patterns and channel complexity. Ecohydrology, 2016, 9: 1639.

[365]

Wan C, Jiao Y, Liang D, Wu Y, Li J. A geologic architecture system-inspired micro-/nano-heterostructure design for high-performance energy storage. Adv Energy Mater, 2018, 81802388

[366]

Fang D, Chen S, Wang X, Bando Y, Golberg D, Zhang S. Zns quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy li-ion batteries. J Mater Chem A, 2018, 6: 8358

[367]

Ma Z, Zhang J, Maluk C, Yu Y, Seraji SM, Yu B, Wang H, Song P. A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter, 2022, 5: 911

[368]

Fan Z, Zhao H, Zhou M, Zhai S, Liu C, Cai Z. Three-dimensional transport fabrics with ultrafast water transporting and diffusion inspired by river-diversion. Mater Lett, 2020, 262127050

[369]

Wang X, Pan H, Lian L, Gong X, Wang Y, Zhang C. Raining-inspired method for construction of porous film material. Giant, 2024, 19100293

[370]

Erbe EF, Rango A, Foster J, Josberger EG, Pooley C, Wergin WP. Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy. Microsc Res Tech, 2003, 62: 19

[371]

Tanaka K, Horn CP, Wen J, Koritala RE, Guha S. Atomic imprint crystallization: externally-templated crystallization of amorphous silicon. Mater Today Phys, 2025, 50101599

[372]

Yu L, Niazi MR, Ngongang Ndjawa GO, Li R, Kirmani AR, Munir R, Balawi AH, Laquai F, Amassian A. Programmable and coherent crystallization of semiconductors. Sci Adv, 2017, 3: 1602462.

[373]

Zhang J, Wang F, Shenoy VB, Tang M, Lou J. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Mater Today, 2020, 40: 132.

[374]

He Z, Liu K, Wang J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc Chem Res, 2018, 51: 1082

[375]

Idrus-Saidi SA, Tang J, Lambie S, Han J, Mayyas M, Ghasemian MB, Allioux FM, Cai S, Koshy P, Mostaghimi P, Steenbergen KG, Barnard AS, Daeneke T, Gaston N, Kalantar-Zadeh K. Liquid metal synthesis solvents for metallic crystals. Science, 2022, 378: 1118

[376]

Yang Z, Wei J, Sobolev YI, Grzybowski BA. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature, 2018, 553: 313

[377]

Yang Z, Snyder D, Sathyan A, Balazs A, Emrick T. Smart droplets stabilized by designer surfactants: from biomimicry to active motion to materials healing. Adv Funct Mater, 2023, 332306819

[378]

Wang H, Wang F, Zhang S, Shen J, Zhu X, Cui Y, Li P, Lin C, Li X, Xiao Q, Luo W. Ice-templated synthesis of atomic cluster cocatalyst with regulable coordination number for enhanced photocatalytic hydrogen evolution. Adv Mater, 2024, 362400764

[379]

Wegst UGK, Kamm PH, Yin K, García-Moreno F. Freeze casting. Nat Rev Methods Prim, 2024, 4: 28

[380]

Portehault D, Gómez-Recio I, Baron MA, Musumeci V, Aymonier C, Rouchon V, Le Godec Y. Geoinspired syntheses of materials and nanomaterials. Chem Soc Rev, 2022, 51: 4828

[381]

Boca Santa RAA, da Silva AFV, Padoin N, Soares C, Riella HG. Novel porous geopolymeric formulation as green material applied to the recovery of contaminated effluent aiming environmental protection. J Clean Prod, 2019, 231: 395

[382]

Zhang PF, Zhou MF, Robinson PT, Malpas J, Yumul GP, Wang CY, Li J. Diversities of chromite mineralization induced by chemo-thermal evolution of the mantle during subduction initiation. Nat Commun, 2024, 159385

[383]

Dallai L, Bianchini G, Avanzinelli R, Deloule E, Natali C, Gaeta M, Cavallo A, Conticelli S. Quartz-bearing rhyolitic melts in the Earth’s mantle. Nat Commun, 2022, 13: 7765

[384]

Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu L. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359: 1489

[385]

Gong Y, Luo D, Choe M, Kim Y, Ram B, Zafari M, Seong WK, Bakharev P, Wang M, Park IK, Lee S, Shin TJ, Lee Z, Lee G, Ruoff RS. Growth of diamond in liquid metal at 1 atm pressure. Nature, 2024, 629348

[386]

Crane MJ, Petrone A, Beck RA, Lim MB, Zhou X, Li X, Stroud RM, Pauzauskie PJ. Doping of nanodiamond. Sci Adv, 2019, 5: eaau6073

[387]

Xie S, Dong Y, Wang X, Zeng Z, Zhou H, Yuan Z, Sun W, Ji X, Yang Y, Ge P. Tailored anion radii of molten-salts systems toward graphite regeneration with excellent energy-storage properties. Energy Storage Mater, 2024, 70103510

[388]

Zhu C, Zhang G, Zhu K, Xu J, Niu Y, Liu J. A molten salt energy storage integrated with combined heat and power system: scheme design and performance analysis. Energy, 2024, 313133755

[389]

Zhao J, Wu X, Zhang D, Xu X, Wang X, Zhao X. Amber rainbow ribbon effect in broadband optical metamaterials. Nat Commun, 2024, 15: 2613

[390]

Bikmukhametov F, Glazko L, Muravev I, Pozdeev D, Vasiliev E, Krasikov S, Krasikova M. Ventilated noise-insulating metamaterials inspired by sonic black holes. Appl Acoust, 2025, 238110813

[391]

Cezan SD, Baytekin HT, Baytekin B. Self-regulating plant robots: bioinspired heliotropism and nyctinasty. Soft Robot, 2020, 7: 444

[392]

Zheng R, Ma L, Feng W, Pan J, Wang Z, Chen Z, Zhang Y, Li C, Chen P, Bisoyi HK, Li B, Li Q, Lu Y. Autonomous self-sustained liquid crystal actuators enabling active photonic applications. Adv Funct Mater, 2023, 33: 2301142

[393]

Du T, Li B, Wang X, Yu B, Pei X, Huck WTS, Zhou F. Bio-inspired renewable surface-initiated polymerization from permanently embedded initiators. Angew Chem Int Ed Engl, 2016, 55: 4260

[394]

Sun P, Qin B, Xu JF, Zhang X. Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Prog Polym Sci, 2022, 124101486

[395]

Zhang Y, Cai C, Xu K, Yang X, Yu L, Gao L, Dong S. A supramolecular approach for converting renewable biomass into functional materials. Mater Horizons, 2023, 11: 1315.

[396]

Gao C, Gu Y, Liu Q, Lin W, Zhang B, Lin X, Wang H, Zhao Y, Qu L. All plant-based compact supercapacitor in living plants. Small, 2024, 202307400

[397]

Zhang H, Ma S, Xu C, Ma J, Chen Y, Hu Y, Xu H, Lin Z, Liang Y, Ren L, Ren L. Soft actuator with biomass porous electrode: a strategy for lowering voltage and enhancing durability. Nano Lett, 2024, 24: 5066

[398]

Senthil C, Lee CW. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renew Sustain Energy Rev, 2021, 137110464

[399]

Vazquez-Martel C, Florido Martins L, Genthner E, Almeida C, Martel Quintana A, Bastmeyer M, Gómez Pinchetti JL, Blasco E. Printing green: microalgae-based materials for 3D printing with light. Adv Mater, 2024, 36: 2402786

[400]

He L, Zhang C, Zhang B, Yang O, Yuan W, Zhou L, Zhao Z, Wu Z, Wang J, Wang ZL. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano, 2022, 166244

[401]

Peng W, Ni Q, Zhu R, Fu X, Zhu X, Zhang C, Liao L. Triboelectric-electromagnetic hybrid wind energy harvesting and multifunctional sensing device for self-powered smart agricultural monitoring. Nano Energy, 2024, 131110272

[402]

Wang J, Chen Z, Feng L, Yu F, Ran C, Xu N, Jia Z, Li C, Zheng Y, Shi W, Li M. Plants transpiration-inspired antibacterial evaporator with multiscale structure and low vaporization enthalpy for solar steam generation. Nano Energy, 2023, 114108631

[403]

Wu J, Cui Z, Yu Y, Yue B, Hu J, Qu J, Li J, Tian D, Cai Y. Multifunctional solar evaporator with adjustable island structure improves performance and salt discharge capacity of desalination. Adv Sci, 2023, 102305523

[404]

Liu J, Cui Y, Pan Y, Chen Z, Jia T, Li C, Wang Y. Donor-acceptor molecule based high-performance photothermal organic material for efficient water purification and electricity generation. Angew Chem Int Ed, 2022, 61e202117087

[405]

Chen Y, He J, Ye C, Tang S. Achieving ultrahigh voltage over 100 V and remarkable freshwater harvesting based on thermodiffusion enhanced hydrovoltaic generator. Adv Energy Mater, 2024, 142400529

[406]

Li G, Chen X, Zhou F, Liang Y, Xiao Y, Cao X, Zhang Z, Zhang M, Wu B, Yin S, Xu Y, Fan H, Chen Z, Song W, Yang W, Pan B, Hou J, Zou W, He S, Yang X, Mao G, Jia Z, Zhou H, Li T, Qu S, Xu Z, Huang Z, Luo Y, Xie T, Gu J, Zhu S, Yang W. Self-powered soft robot in the Mariana trench. Nature, 2021, 591: 66

[407]

Pan F, Liu J, Zuo Z, He X, Shao Z, Chen J, Wang H, Zhang Q, Yuan F, Chen B, Jin T, He L, Wang Y, Zhang K, Ding X, Li T, Wen L. Miniature deep-sea morphable robot with multimodal locomotion. Sci Robot, 2025, 10: adp7821.

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

/