Translational Potential of an Electrospun Polycaprolactone Scaffold for Anterior Cruciate Ligament Reconstruction

Jinrong Lin , Kaili Chen , Meng Liang , Tania Choreno Machain , Daisy Crouch , Simona Mengoli , George Exley , Alma Zaplluzha , Mathew Baldwin , William Jackson , Thomas Cosker , Sarah Snelling , Andrew Carr , Gordon Blunn , Andrew Price , Pierre-Alexis Mouthuy

Advanced Fiber Materials ›› : 1 -17.

PDF
Advanced Fiber Materials ›› :1 -17. DOI: 10.1007/s42765-025-00632-8
Research Article
research-article

Translational Potential of an Electrospun Polycaprolactone Scaffold for Anterior Cruciate Ligament Reconstruction

Author information +
History +
PDF

Abstract

Anterior cruciate ligament (ACL) injuries are common and often require surgical reconstruction. Autografts remain the clinical standard for ACL reconstruction (ACLR) but are limited by donor site morbidity, inconsistent outcomes, and supply constraints. Here, we report the development of electrospun ligament (ES-Lig), a fully degradable, electrospun scaffold composed of poly(ε-caprolactone) (PCL) designed to mimic the extracellular matrix (ECM) of the native ACL. A scalable manufacturing process was established, incorporating electrospinning, filament stretching, alignment, and braiding. ES-Lig demonstrated controlled in vitro degradation over 12 months while retaining sufficient mechanical strength for early-stage healing. Mechanical characterisation revealed tensile properties and fixation stability comparable to autografts. In vitro biocompatibility was confirmed through cytotoxicity assays, patient-derived ACL explants, and direct cell growth onto the material. In an ovine ACLR model, ES-Lig enabled functional recovery, tissue infiltration throughout its length, and joint stability within 10 weeks post-implantation. Histological and imaging analyses confirmed graft-bone integration, vascularisation, and early ligamentisation. These findings establish ES-Lig as a promising, clinically translatable scaffold for next-generation ACL repair.

Graphical abstract

Keywords

Anterior cruciate ligament (ACL) / Poly(ε-caprolactone) (PCL) / Artificial ligament / Electrospun scaffold / Braiding

Cite this article

Download citation ▾
Jinrong Lin, Kaili Chen, Meng Liang, Tania Choreno Machain, Daisy Crouch, Simona Mengoli, George Exley, Alma Zaplluzha, Mathew Baldwin, William Jackson, Thomas Cosker, Sarah Snelling, Andrew Carr, Gordon Blunn, Andrew Price, Pierre-Alexis Mouthuy. Translational Potential of an Electrospun Polycaprolactone Scaffold for Anterior Cruciate Ligament Reconstruction. Advanced Fiber Materials 1-17 DOI:10.1007/s42765-025-00632-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gracey E, Burssens A, Cambre I, Schett G, Lories R, McInnes IB, Asahara H, Elewaut D. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol, 2020, 16: 193

[2]

Nogaro MC, Abram SGF, Alvand A, Bottomley N, Jackson WFM, Price A. Paediatric and adolescent anterior cruciate ligament reconstruction surgery. Bone Joint J, 2020, 102-B: 239

[3]

Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med, 2016, 44: 1502

[4]

Beard DJ, Davies L, Cook JA, Stokes J, Leal J, Fletcher H, Abram S, Chegwin K, Greshon A, Jackson W, Bottomley N, Dodd M, Bourke H, Shirkey BA, Paez A, Lamb SE, Barker K, Phillips M, Brown M, Lythe V, Mirza B, Carr A, Monk P, Morgado Areia C, O'Leary S, Haddad F, Wilson C, Price AGroup ASS. Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial. Lancet, 2022, 400: 605

[5]

Davies L, Cook J, Leal J, Areia CM, Shirkey B, Jackson W, Campbell H, Fletcher H, Carr A, Barker K, Lamb SE, Monk P, O'Leary S, Haddad F, Wilson C, Price A, Beard D. Comparison of the clinical and cost effectiveness of two management strategies (rehabilitation versus surgical reconstruction) for non-acute anterior cruciate ligament (ACL) injury: study protocol for the ACL snnap randomised controlled trial. Trials, 2020, 21: 405

[6]

Baawa-Ameyaw J, Plastow R, Begum FA, Kayani B, Jeddy H, Haddad F. Current concepts in graft selection for anterior cruciate ligament reconstruction. EFORT Open Rev, 2021, 6: 808

[7]

Rilk S, Goodhart GC, O'Brien R, Vermeijden HD, van der List JP, DiFelice GS. Anatomic arthroscopic primary repair of proximal anterior cruciate ligament tears. Arthrosc Tech, 2023, 12 e879

[8]

Longstaffe R, Leiter J, Gurney-Dunlop T, McCormack R, MacDonald P. Return to play and career length after anterior cruciate ligament reconstruction among Canadian professional football players. Am J Sports Med, 2020, 48: 1682

[9]

Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med, 2016, 44: 1861

[10]

Grassi A, Pizza N, Al-Zu'bi BBH, Fabbro GD, Lucidi GA, Zaffagnini S. Clinical outcomes and osteoarthritis at very long-term follow-up after ACL reconstruction: a systematic review and meta-analysis. Orthop J Sports Med, 2022, 10 23259671211062238

[11]

Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W. Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop, 2010, 34: 465

[12]

Gao H, Sun L, Yu C, Huang M, Feng S, Sheng D, Tim Yun Ong M, Sai Chuen Bruma F, Yang X, Hao Y, Rolf C, Chen S, Li Y, Chen J. Anterior cruciate ligament repair augmented with a polyethylene terephthalate band supports biomechanical stability during the early healing phase in a rabbit model. Am J Sports Med, 2025, 53: 1347

[13]

Mengsteab PY, Otsuka T, McClinton A, Shemshaki NS, Shah S, Kan HM, Obopilwe E, Vella AT, Nair LS, Laurencin CT. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc Natl Acad Sci U S A, 2020, 117: 28655

[14]

Chen T, Zhang P, Chen J, Hua Y, Chen S. Long-term outcomes of anterior cruciate ligament reconstruction using either synthetics with remnant preservation or hamstring autografts: a 10-year longitudinal study. Am J Sports Med, 2017, 45: 2739

[15]

Satchanska G, Davidova S, Petrov PD. Natural and synthetic polymers for biomedical and environmental applications. Polymers, 2024

[16]

Tulloch SJ, Devitt BM, Porter T, Hartwig T, Klemm H, Hookway S, Norsworthy CJ. Primary ACL reconstruction using the LARS device is associated with a high failure rate at minimum of 6-year follow-up. Knee Surg Sports Traumatol Arthrosc, 2019, 27: 3626

[17]

Dong Q, Cai J, Wang H, Chen S, Liu Y, Yao J, Shao Z, Chen X. Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomater, 2020, 106: 102

[18]

Looney AM, Leider JD, Horn AR, Bodendorfer BM. Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: a review of current concepts and emerging techniques. SAGE Open Med, 2020, 8 2050312120921057

[19]

Kawakami Y, Nonaka K, Fukase N, Amore A, Murata Y, Quinn P, Luketich S, Takayama K, Patel KG, Matsumoto T, Cummins JH, Kurosaka M, Kuroda R, Wagner WR, Fu FH, Huard J. A cell-free biodegradable synthetic artificial ligament for the reconstruction of anterior cruciate ligament in a rat model. Acta Biomater, 2021, 121: 275

[20]

Mouthuy PA, Zargar N, Hakimi O, Lostis E, Carr A. Fabrication of continuous electrospun filaments with potential for use as medical fibres. Biofabrication, 2015, 7 025006

[21]

Sensini A, Cristofolini L. Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments. Materials (Basel), 2018

[22]

Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The role of the non-collagenous extracellular matrix in tendon and ligament mechanical behavior: a review. J Biomech Eng. 2022; 144.

[23]

Abhari RE, Martins JA, Morris HL, Mouthuy PA, Carr A. Synthetic sutures: clinical evaluation and future developments. J Biomater Appl, 2017, 32: 410

[24]

Abhari RE, Mouthuy PA, Zargar N, Brown C, Carr A. Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments. J Mech Behav Biomed Mater, 2017, 67: 127

[25]

Lach AA, Morris HL, Martins JA, Stace ET, Carr AJ, Mouthuy PA. Pyridine as an additive to improve the deposition of continuous electrospun filaments. PLoS ONE, 2019, 14 e0214419

[26]

Abhari RE, Carr AJ, Mouthuy P-A. 15 - Multifilament electrospun scaffolds for soft tissue reconstruction. In: Guarino V, Ambrosio L, editors. Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices. Woodhead Publishing; 2018. p. 295.

[27]

Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed, 2018, 29: 863

[28]

Kadyr S, Nurmanova U, Khumyrzakh B, Zhakypbekova A, Saginova D, Daniyeva N, Erisken C. Braided biomimetic PCL grafts for anterior cruciate ligament repair and regeneration. Biomed Mater. 2024; 19.

[29]

Olvera D, Schipani R, Sathy BN, Kelly DJ. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Biomed Mater, 2019, 14 035016

[30]

Tang Y, Tian J, Li L, Huang L, Shen Q, Guo S, Jiang Y. Biomimetic biphasic electrospun scaffold for anterior cruciate ligament tissue engineering. Tissue Eng Regen Med, 2021, 18: 819

[31]

Savic L, Augustyniak EM, Kastensson A, Snelling S, Abhari RE, Baldwin M, Price A, Jackson W, Carr A, Mouthuy PA. Early development of a polycaprolactone electrospun augment for anterior cruciate ligament reconstruction. Mater Sci Eng C Mater Biol Appl, 2021, 129 112414

[32]

Mouthuy PA, Snelling S, Hostettler R, Kharchenko A, Salmon S, Wainman A, Mimpen J, Paul C, Carr A. Humanoid robots to mechanically stress human cells grown in soft bioreactors. Commun Eng, 2022, 1: 2

[33]

Scheffler SU, Schmidt T, Gangey I, Dustmann M, Unterhauser F, Weiler A. Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy, 2008, 24: 448

[34]

Ellis DG. Cross-sectional area measurements for tendon specimens: a comparison of several methods. J Biomech, 1969, 2: 175

[35]

Pauly H, Kelly D, Popat K, Easley J, Palmer R, Haut Donahue TL. Mechanical properties of a hierarchical electrospun scaffold for ovine anterior cruciate ligament replacement. J Orthop Res, 2019, 37: 421

[36]

Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech, 1998, 31: 519

[37]

Lin J, Zhang S, Xin E, Liang M, Yang L, Chen J. Anterior cruciate ligament femoral footprint is oblong-ovate, triangular, or two-tears shaped in healthy young adults: three-dimensional MRI analysis. Knee Surg Sports Traumatol Arthrosc, 2023, 31: 5514

[38]

Meyers MA, McKittrick J, Chen PY. Structural biological materials: critical mechanics-materials connections. Science, 2013, 339: 773

[39]

Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci, 2019, 96: 1

[40]

Vaishya R, Agarwal AK, Ingole S, Vijay V. Current trends in anterior cruciate ligament reconstruction: a review. Cureus, 2015, 7e378

[41]

Abrams GD, Harris JD, Gupta AK, McCormick FM, Bush-Joseph CA, Verma NN, Cole BJ, Bach BRJr.. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med, 2014, 2 2325967113518305

[42]

Hunt P, Scheffler SU, Unterhauser FN, Weiler A. A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep. Arch Orthop Trauma Surg, 2005, 125: 238

[43]

Kondo E, Yasuda K, Katsura T, Hayashi R, Azuma C, Tohyama H. Local administration of autologous synovium-derived cells improve the structural properties of anterior cruciate ligament autograft reconstruction in sheep. Am J Sports Med, 2011, 39: 999

[44]

Mayr HO, Stoehr A, Dietrich M, von Eisenhart-Rothe R, Hube R, Senger S, Suedkamp NP, Bernstein A. Graft-dependent differences in the ligamentization process of anterior cruciate ligament grafts in a sheep trial. Knee Surg Sports Traumatol Arthrosc, 2012, 20: 947

[45]

Takahashi T, Kondo E, Yasuda K, Miyatake S, Kawaguchi Y, Onodera J, Kitamura N. Effects of remnant tissue preservation on the tendon graft in anterior cruciate ligament reconstruction: a biomechanical and histological study. Am J Sports Med, 2016, 44: 1708

[46]

Yoshikawa T, Tohyama H, Katsura T, Kondo E, Kotani Y, Matsumoto H, Toyama Y, Yasuda K. Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med, 2006, 34: 1918

[47]

Viateau V, Manassero M, Anagnostou F, Guerard S, Mitton D, Migonney V. Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement: a 3-month and 12-month study. Arthroscopy, 2013, 29: 1079

[48]

Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI. In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech, 1994, 27: 517

[49]

Halonen KS, Mononen ME, Toyras J, Kroger H, Joukainen A, Korhonen RK. Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. J Biomech, 2016, 49: 2566

[50]

Liu S, Li H, Tao H, Sun Y, Chen S, Chen J. A randomized clinical trial to evaluate attached hamstring anterior cruciate ligament graft maturity with magnetic resonance imaging. Am J Sports Med, 2018, 46: 1143

Funding

UK Research and Innovation(MR/Z503861/1)

RIGHTS & PERMISSIONS

The Author(s)

PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

/