Dual Biomimetic Nanofiber Conduits Enable Synergistic NGF Delivery and Endogenous Piezoelectric Stimulation for Peripheral Nerve Regeneration

Zhenwei Yi , Yaofa Lin , Rui Jing , Xiangru Feng , Xiaoxuan Lu , Diqi Tian , Haodong Lin , Liming Zhao

Advanced Fiber Materials ›› : 1 -21.

PDF
Advanced Fiber Materials ›› :1 -21. DOI: 10.1007/s42765-025-00627-5
Research Article
research-article

Dual Biomimetic Nanofiber Conduits Enable Synergistic NGF Delivery and Endogenous Piezoelectric Stimulation for Peripheral Nerve Regeneration

Author information +
History +
PDF

Abstract

After peripheral nerve injury, decreased nerve growth factor (NGF) levels and interrupted bioelectrical signal transmission are key factors leading to delayed nerve regeneration. However, the nerve conduits currently applied in clinical practice fail to simultaneously achieve sustained nutritional support and electrical activity maintenance for the injured microenvironment, limiting their repair effects. Herein, a dual-functional-layer nerve conduit loaded with NGF and exhibiting a high piezoelectric response was fabricated using electrospinning technology. The inner layer was composed of heparin-functionalized chitosan nanofibers loaded with NGF (CPHN), whereas the outer layer was formed from polyvinylidene fluoride (PVDF) nanofibers incorporated with ZnO nanoparticles (PZ). The results showed that the heparin-functionalized chitosan nanofibers significantly enhanced the loading density and stability of NGF. Additionally, PZ nanofibers with 1 wt% ZnO generated stable and appropriate endogenous electrical stimulation under controlled external stimulation. In vitro experiments demonstrated that the combination of PZ and CPHN (PZ@CPHN) could compensate for TrkA receptor desensitization, improve NGF pharmacodynamics, and activate the NGF/TrkA signaling pathway to regulate PC12 cells proliferation, differentiation, and motility. In the rat sciatic nerve defect model, transplantation of the PZ@CPHN conduit significantly promoted the reconstruction of regenerated nerve tissue and the recovery of muscle motor function after 12 weeks, achieving a repair outcome comparable to that of autologous nerve transplantation. In summary, a novel therapeutic strategy combining NGF administration with endogenous electrical stimulation is proposed to accelerate peripheral nerve regeneration.

Keywords

Electrospun nanofibers / Nerve growth factor / Piezoelectric response / Peripheral nerve regeneration

Cite this article

Download citation ▾
Zhenwei Yi, Yaofa Lin, Rui Jing, Xiangru Feng, Xiaoxuan Lu, Diqi Tian, Haodong Lin, Liming Zhao. Dual Biomimetic Nanofiber Conduits Enable Synergistic NGF Delivery and Endogenous Piezoelectric Stimulation for Peripheral Nerve Regeneration. Advanced Fiber Materials 1-21 DOI:10.1007/s42765-025-00627-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the novel multifunctional nerve guidance conduits: from specific regenerative procedures to motor function rebuilding. Adv Mater, 2024, 36. e2307805

[2]

Lackington WA, Ryan AJ, O’Brien FJ. Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomater Sci Eng, 2017, 3: 1221.

[3]

Fan N, Song D, Ding H, Yang H, Xu C, Wang C, Yang Y. E-jet 3D printed aligned nerve guidance conduits incorporated with decellularized extracellular matrix hydrogel encapsulating extracellular vesicles for peripheral nerve repair. Acta Biomater, 2025, 194: 122.

[4]

Yi ZW, Zhan FK, Chen YJ, Zhang R, Lin HD, Zhao LM. An electroconductive hydrogel with injectable and self-healing properties accelerates peripheral nerve regeneration and motor functional recovery. Chem Eng J, 2023, 478. 147261

[5]

Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater, 2022, 11: 57

[6]

Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng, 2024, 21. 041001

[7]

Shan Y, Xu L, Cui X, Wang E, Jiang F, Li J, Ouyang H, Yin T, Feng H, Luo D, Zhang Y, Li Z. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. Mater Horiz, 2024, 11: 1032.

[8]

Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater, 2024, 19. 052008

[9]

Xu D, Fu S, Zhang H, Lu W, Xie J, Li J, Wang H, Zhao Y, Chai R. Ultrasound-responsive aligned piezoelectric nanofibers derived hydrogel conduits for peripheral nerve regeneration. Adv Mater, 2024, 36. e2307896

[10]

Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine, 2022, 17: 477.

[11]

Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: bioactive macromolecular drugs for peripheral nerve injury treatment - molecular mechanisms and delivery platforms. Biomed Pharmacother, 2024, 170. 116024

[12]

Lee S, Hwang C, Marini S, Tower RJ, Qin Q, Negri S, Pagani CA, Sun Y, Stepien DM, Sorkin M, Kubiak CA, Visser ND, Meyers CA, Wang Y, Rasheed HA, Xu J, Miller S, Huber AK, Minichiello L, Cederna PS, Kemp SWP, Clemens TL, James AW, Levi B. NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun, 2021, 12: 4939.

[13]

Yin T, Wang G, Wang L, Mudgal P, Wang E, Pan CC, Alexander PB, Wu H, Cao C, Liang Y, Tan L, Huang D, Chong M, Chen R, Lim BJW, Xiang K, Xue W, Wan L, Hu H, Loh YH, Wang XF, Li QJ. Breaking NGF-TrkA immunosuppression in melanoma sensitizes immunotherapy for durable memory T cell protection. Nat Immunol, 2024, 25: 268.

[14]

Xu H, Yu Y, Zhang L, Zheng F, Yin Y, Gao Y, Xu P. Sustainable release of nerve growth factor for peripheral nerve regeneration using nerve conduits laden with Bioconjugated hyaluronic acid-chitosan hydrogel. Compos Part B-Eng, 2023, 230. 109509

[15]

Zeng W, Hui H, Liu Z, Chang Z, Wang M, He B, Hao D. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair. Carbohydr Polym, 2021, 258. 117684

[16]

Lackington WA, Kočí Z, Alekseeva T, Hibbitts AJ, Kneafsey SL, Chen G, O'Brien FJ. Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. J Control Release, 2019, 304: 51.

[17]

Liang X, Mu M, Fan R, Zou B, Guo G. Functionalized chitosan as a promising platform for cancer immunotherapy: a review. Carbohydr Polym, 2022, 290. 119452

[18]

Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: a comprehensive review. Int J Biol Macromol, 2024, 264. 130683

[19]

Ikegami Y, Shafiq M, Aishima S, Ijima H. Heparin/growth factors-immobilized aligned electrospun nanofibers promote nerve regeneration in polycaprolactone/gelatin-based nerve guidance conduits. Adv Fiber Mater, 2023, 5: 554.

[20]

Du F, Wang H, Zhao W, Li D, Kong D, Yang J, Zhang Y. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials, 2012, 33: 762.

[21]

Li G, Xiao Q, Zhang L, Zhao Y, Yang Y. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohydr Polym, 2017, 171: 39.

[22]

Dong M, Shi B, Liu D, Liu JH, Zhao D, Yu ZH, Shen XQ, Gan JM, Shi BL, Qiu Y, Wang CC, Zhu ZZ, Shen QD. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve. ACS Nano, 2020, 14: 16565.

[23]

Pi W, Rao F, Cao J, Zhang M, Chang T, Han Y, Zheng Y, Liu S, Li Q, Sun X, Shao Y. Sono-electro-mechanical therapy for peripheral nerve regeneration through piezoelectric nanotracts. Nano Today, 2023, 50. 101860

[24]

Wang X, Xu Q, Xu Y, Yuan L, Guan X, Ma S, Zhang D, Liu X, Li J, Zhang T, Yang X, Zhou W, Jia W. Portable absorbable electrical stimulation system for enhanced peripheral nerve repair. Adv Funct Mater, 2024, 35202417839

[25]

Qi T, Wang X, Zhang J, Gou M, He C. Percutaneous electrical stimulation combined with conductive nerve guidance conduits for peripheral nerve regeneration. Chem Eng J, 2025, 511. 162124

[26]

Gupta B, Saxena A, Perillo ML, Wade-Kleyn LC, Thompson CH, Purcell EK. Structural, functional, and genetic changes surrounding electrodes implanted in the brain. Acc Chem Res, 2024, 57: 1346.

[27]

Wu L, Gao H, Han Q, Guan W, Sun S, Zheng T, Liu Y, Wang X, Huang R, Li G. Piezoelectric materials for neuroregeneration: a review. Biomater Sci, 2023, 11: 7296.

[28]

Wang W, Li K, Ma W, Li Y, Liu F, Kong Y, Wang L, Yi F, Sang Y, Li G, Liu H, Qiu J. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury. Nat Mater, 2025, 24: 1137.

[29]

Shi B, Lu S, Yang H, Mahmood S, Sun C, Malek NANN, Kamaruddin WHA, Saidin S, Zhang CC. One-dimensional nanomaterials for nerve tissue engineering to repair spinal cord injury. BMEMat, 2025, 3. e12111

[30]

Sui BY, Ding TT, Wan XY, Chen YX, Zhang XD, Cui YB, Pan J, Li LL, Liu X. Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages. Exploration, 2024, 4: 20230149.

[31]

Zhao YC, Huang T, Zhang XD, Cui Y, Zhang L, Li LL, Wang ZL. Piezotronic and piezo-phototronic effects on sonodynamic disease therapy. BMEMat, 2023, 1. e12006

[32]

Yao X, Qian Y, Fan C. Electroactive nanomaterials in the peripheral nerve regeneration. J Mater Chem B, 2021, 9: 6958.

[33]

Mao R, Yu B, Cui J, Wang Z, Huang X, Yu H, Lin K, Shen SGF. Piezoelectric stimulation from electrospun composite nanofibers for rapid peripheral nerve regeneration. Nano Energy, 2022, 98. 107322

[34]

Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141: 1117.

[35]

Pawson T. Protein modules and signalling networks. Nature, 1995, 373: 573.

[36]

Yang Y, Luo R, Chao S, Xue J, Jiang D, Feng Y, Guo XD, Luo D, Zhang J, Li Z, Wang ZL. Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation. Nat Commun, 2022, 13: 6908.

[37]

Yu S, Tai Y, Milam-Guerrero JA, Nam J, Myung NV. Electrospun organic piezoelectric nanofibers and their energy and bio applications. Nano Energy, 2022, 97. 107174

[38]

Ma Y, Wang H, Wang Q, Cao X, Gao H. Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration. Chem Eng J, 2023, 452. 139424

[39]

Gwon K, Hong HJ, Gonzalez-Suarez AM, Slama MQ, Choi D, Hong J, Baskaran H, Stybayeva G, Peterson QP, Revzin A. Bioactive hydrogel microcapsules for guiding stem cell fate decisions by release and reloading of growth factors. Bioact Mater, 2021, 15: 1

[40]

Smith PK, Mallia AK, Hermanson GT. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal Biochem, 1980, 109: 466.

[41]

Yang Y, Yin X, Wang H, Qiu W, Li L, Li F, Shan Y, Zhao Z, Li Z, Guo J, Zhang J, Zhao Y. Engineering a wirelessly self-powered and electroconductive scaffold to promote peripheral nerve regeneration. Nano Energy, 2023, 107. 108145

[42]

Lu S, Chen W, Wang J, Guo Z, Xiao L, Wei L, Yu J, Yuan Y, Chen W, Bian M, Huang L, Liu Y, Zhang J, Li Y, Jiang L. Polydopamine-decorated PLCL conduit to induce synergetic effect of electrical stimulation and topological morphology for peripheral nerve regeneration. Small Methods, 2023, 7. e2200883

[43]

Sharma A, Panwar V, Mondal B, Prasher D, Bera MK, Thomas J, Kumar A, Kamboj N, Mandal D, Ghosh D. Electrical stimulation induced by a piezo-driven triboelectric nanogenerator and electroactive hydrogel composite, accelerate wound repair. Nano Energy, 2022, 99. 107419

[44]

Shee C, Banerjee S, Bairagi S, Baburaj A, Naveen KSK, Aliyana AK, Mulvihill DM, Alagirusamy R, Ali SW. A critical review on polyvinylidene fluoride (PVDF)/zinc oxide (ZnO) based piezoelectric and triboelectric nanogenerators. J Phys Energy, 2024, 6. 032001

[45]

Venkatesan HM, Arun AP. High-performance triboelectric nanogenerators based on Ag-doped ZnO loaded electrospun PVDF nanofiber mats for energy harvesting and healthcare monitoring. Sci Rep, 2025, 15: 3347.

[46]

Zhang S, Huang L, Chen W, Chen Q, Liu X, Su D, Xiao L, Zhou D, Zhang J, Jiang L, Li Y. Piezoelectric hydrogel with self-powered biomechanical stimulation enhances bone regeneration. Acta Biomater, 2025, 195: 117.

[47]

Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z. Electric energy storage properties of poly (vinylidene fluoride). Appl Phys Lett, 2010, 96. 192905

[48]

Ye H, Yang L, Shao W, Sun S, Zhen L. Effect of electroactive phase transformation on electron structure and dielectric properties of uniaxial stretching poly (vinylidene fluoride) films. RSC Adv, 2013, 3: 23730.

[49]

Wang Q, Wei Y, Yin X, Zhan G, Cao X, Gao H. Engineered PVDF/PLCL/PEDOT dual electroactive nerve conduit to mediate peripheral nerve regeneration by modulating the immune microenvironment. Adv Funct Mater, 2024, 34. 2400217

[50]

Kemp SWP, Webb AA, Dhaliwal S, Syed S, Walsh SK, Midha R. Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Exp Neurol, 2011, 229: 460.

[51]

Conti AM, Fischer SJ, Windebank AJ. Inhibition of axonal growth from sensory neurons by excess nerve growth factor. Ann Neurol, 1994, 42: 838.

[52]

Chen GL, Hu QH, Tang CY, Zhong SJ, Wang SB, Jiang ZH, Yao SC, Zhao QY, Li LL. Biodegradable piezoelectric amino acid nerve guidance conduit repairs long-gap nerve defect under low frequency vibration from massage gun. Adv Funct Mater. 2025; e10947.

[53]

Hao JH, Malek NANN, Kamaruddin WHA, Li JH. Breaking piezoelectric limits of molecules for biodegradable implants. BMEMat, 2024, 2. e12087

[54]

Liu K, Tang W, Jin S, Hao X, Hu Y, Zhou T, Zhou C, Chen G, Cui Y, Liu Q, Zhang Z. PLCL/SF/NGF nerve conduit loaded with RGD-TA-PPY hydrogel promotes regeneration of sciatic nerve defects in rats through PI3K/AKT signalling pathways. J Cell Mol Med, 2024, 28. e18544

[55]

Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic potential of complementary and alternative medicines in peripheral nerve regeneration: a systematic review. Cells, 2021, 10: 2194.

[56]

Nordvall G, Forsell P, Sandin J. Neurotrophin-targeted therapeutics: a gateway to cognition and more?. Drug Discov Today, 2022, 27. 103318

[57]

Nwosu LN, Mapp PI, Chapman V. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann Rheum Dis, 2016, 75: 1246. Walsh DA

[58]

Saygili E, Schauerte P, Küppers F, Heck L, Weis J, Weber C, Schwinger RHG, Hoffmann R, Schröder JW, Marx N, Rana OR. Electrical stimulation of sympathetic neurons induces autocrine/paracrine effects of NGF mediated by TrkA. J Mol Cell Cardiol, 2010, 49. 79

[59]

Tominami K, Kudo T, Noguchi T, Hayashi Y, Luo Y, Tanaka T, Matsushita A, Izumi S, Sato H, Gengyo-Ando K, Matsuzawa A, Hong G, Nakai J. Physical stimulation methods developed for in vitro neuronal differentiation studies of PC12 cells: a comprehensive review. Int J Mol Sci, 2024, 25. 772

[60]

Huo Y, Cheng Y, Dong X, Cheng Q, Liang X, Duan P, Yu Y, Yan L, Qiu T, Pan Z, Dai H. Pleiotropic effects of nitric oxide sustained-release system for peripheral nerve repair. Acta Biomater, 2024, 182: 28.

Funding

National Natural Science Foundation of China(82271407)

Program of Shanghai Academic/Technology Research Leader(22XD1430500)

Programme of Introducing Talents of Discipline to Universities(No. B18022)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

/