Smart Textiles with Living Interfaces: Microbiome–Electronics Integration for Advanced Skin Health Management

Hanbai Wu , Yang Ming , Shuo Shi , Chuanwei Zhi , Daming Chen , Xin Hu , Rujun Yu , Shuang Qiu , Hang Mei Leung , Jinlian Hu , Jooyoun Kim , Joanne Yip , Bin Fei

Advanced Fiber Materials ›› : 1 -39.

PDF
Advanced Fiber Materials ›› :1 -39. DOI: 10.1007/s42765-025-00625-7
Review
review-article

Smart Textiles with Living Interfaces: Microbiome–Electronics Integration for Advanced Skin Health Management

Author information +
History +
PDF

Abstract

Smart textiles have emerged as a transformative class of materials that extend the role of conventional fabrics into personalized health management. This evolution is driven by the seamless integration of textiles with flexible electronics, enabling new paradigms in skin-interfaced systems. In the exploration of novel smart textiles for skin health, microorganisms living in the skin microenvironment necessitate consideration. Skin microbiomes are essential to skin homeostasis and balance the barrier to infection. Moreover, microbes have been extensively explored as functional components in skin health monitoring and therapeutic devices. In this review, the distribution of skin microbes, interactions between host and resident microbiota, and mechanisms of microbial functions in the skin microenvironment are introduced systematically. In addition, recent progress in skin-based flexible devices for health management, and design and fabrication methods for smart textiles are discussed. However, some challenges still exist in association with the integration of microbes into smart textiles, such as the biosafety of microbes, long-term storage, and activation. This review provides a summary of innovative technologies including microencapsulation, synthetic biology, optogenetics, and artificial intelligence for microbe-integrated smart textiles. Next-generation smart textiles will hold significant promise for precision skin disease diagnostics, personalized therapeutics, skin status monitoring, and intelligence regulation.

Graphical Abstract

Keywords

Smart textiles / Skin interface / Microbiomes / Flexible electronics / Health management

Cite this article

Download citation ▾
Hanbai Wu, Yang Ming, Shuo Shi, Chuanwei Zhi, Daming Chen, Xin Hu, Rujun Yu, Shuang Qiu, Hang Mei Leung, Jinlian Hu, Jooyoun Kim, Joanne Yip, Bin Fei. Smart Textiles with Living Interfaces: Microbiome–Electronics Integration for Advanced Skin Health Management. Advanced Fiber Materials 1-39 DOI:10.1007/s42765-025-00625-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma R, Li D, Xu C, Yang J, Huang J, Guo Z. Fabricated advanced textile for personal thermal management, intelligent health monitoring and energy harvesting. Adv Colloid Interface Sci, 2024, 332 103252

[2]

Tian Y, Ding R, Yoon SS, Zhang S, Yu J, Ding B. Recent advances in next-generation textiles. Adv Mater, 2025, 37 e2417022

[3]

Xia G, Bian X, Wang Y, Lam Y, Zhao Y, Fan S, Qi P, Qu Z, Xin JH. Janus outdoor protective clothing with unidirectional moisture transfer, antibacterial, and mosquito repellent properties. Chem Eng J, 2024, 490 151826

[4]

Zhi C, Shi S, Meng S, Wu H, Si Y, Zhang K, Zhang S, Hu J. A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2023, 115 108734

[5]

Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic skin for health monitoring systems: properties, functions, and applications. Adv Mater, 2024, 36 e2402542

[6]

Zhi C, Shi S, Wu H, Si Y, Zhang S, Lei L, Hu J. Emerging trends of nanofibrous piezoelectric and triboelectric applications: mechanisms, electroactive materials, and designed architectures. Adv Mater, 2024, 36 e2401264

[7]

Zhang J, Xu B, Chen K, Li Y, Li G, Liu Z. Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers. SusMat, 2024, 4 e207

[8]

Healing chronic wounds with a wireless smart bandage with integrated sensors and stimulators. Nat Biotechnol. 2023;41:622

[9]

Kim H, Kim JH, Jeong M, Lee D, Kim J, Lee M, Kim G, Kim J, Lee JS, Lee J. Bioelectronic sutures with electrochemical pH-sensing for long-term monitoring of the wound healing progress. Adv Funct Mater, 2024, 34: 2402501

[10]

Kaewpradub K, Veenuttranon K, Jantapaso H, Mittraparp-Arthorn P, Jeerapan I. A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nanomicro Lett, 2024, 17: 71

[11]

Wang Y, Liu K, Wei W, Dai H. A multifunctional hydrogel with photothermal antibacterial and antioxidant activity for smart monitoring and promotion of diabetic wound healing. Adv Funct Mater, 2024, 34: 2402531

[12]

Li H, Zhang L, Liang B, Xue H, Cao H, Li Z, Yang L, Li Y. Smart antibacterial coatings with on-demand drug release and real-time monitoring. Adv Funct Mater, 2025, 35: 2411985

[13]

Bothare V. Smart textile market size, share & trends analysis report by type (passive textiles, active textiles, ultra smart textiles), by function (sensing, energy harvesting, luminescence & aesthetics, thermo-electricity), by end-user (healthcare, military & defense, sports & fitness, fashion and entertainment, automotive, architecture) and by region (North America, Europe, APAC, Middle East and Africa, LATAM) forecasts, 2025–2033. 2024.

[14]

Bay L, Ring HC. Human skin microbiota in health and disease: the cutaneous communities' interplay in equilibrium and dysbiosis: the cutaneous communities' interplay in equilibrium and dysbiosis. APMIS, 2022, 130: 706-718

[15]

Liu Q, Ranallo R, Rios C, Grice EA, Moon K, Gallo RL. Crosstalk between skin microbiota and immune system in health and disease. Nat Immunol, 2023, 24: 895-898

[16]

Larson PJ, Zhou W, Santiago A, Driscoll S, Fleming E, Voigt AY, Chun OK, Grady JJ, Kuchel GA, Robison JT, Oh J. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat Aging, 2022, 2: 941-955

[17]

Tchoupa AK, Kretschmer D, Schittek B, Peschel A. The epidermal lipid barrier in microbiome-skin interaction. Trends Microbiol, 2023, 31: 723-734

[18]

Kashaf SS, Proctor DM, Deming C, Saary P, Holzer MNISC Comparative Sequencing ProgramTaylor ME, Kong HH, Segre JA, Almeida A, Finn RD. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat Microbiol, 2022, 7: 169-179

[19]

Jo JH, Harkins CP, Schwardt NH, Portillo JAProgram NCSZimmerman MD, Carter CL, Hossen MA, Peer CJ, Polley EC, Dartois V, Figg WD, Moutsopoulos NM, Segre JA, Kong HH. Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics. Sci Transl Med, 2021, 13 eabd8077

[20]

Lu Q, Stappenbeck TS. Local barriers configure systemic communications between the host and microbiota. Science, 2022, 376: 950-955

[21]

Masiuk H, Wcislek A, Jursa-Kulesza J. Determination of nasal carriage and skin colonization, antimicrobial susceptibility and genetic relatedness of Staphylococcus aureus isolated from patients with atopic dermatitis in Szczecin. Poland BMC Infect Dis, 2021, 21: 701

[22]

Liu AW, Zhang YR, Chen CS, Edwards TN, Ozyaman S, Ramcke T, McKendrick LM, Weiss ES, Gillis JE, Laughlin CR, Randhawa SK, Phelps CM, Kurihara K, Kang HM, Nguyen SN, Kim J, Sheahan TD, Ross SE, Meisel M, Sumpter TL, Kaplan DH. Scratching promotes allergic inflammation and host defense via neurogenic mast cell activation. Science, 2025, 387 eadn9390

[23]

Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Na t Rev Drug Discov, 2022, 21: 21-40

[24]

Thyssen JP, Vestergaard C, Deleuran M, de Bruin-Weller MS, Bieber T, Taieb A, Seneschal J, Cork MJ, Paul C, Flohr C, Weidinger S, Trzeciak M, Werfel T, Heratizadeh A, Barbarot S, Darsow U, Simon D, Torrelo A, Chernyshov PV, Stalder JF, Gelmetti C, Szalai Z, Svensson A, von Kobyletzki LB, De Raeve L, Folster-Holst R, Cristen-Zaech S, Hijnen D, Gieler U, Ring J, Wollenberg A. European task force on atopic dermatitis (ETFAD): treatment targets and treatable traits in atopic dermatitis. J Eur Acad Dermatol Venereol, 2020, 34: e839-e842

[25]

Nakatsuji T, Hata TR, Tong Y, Cheng JY, Shafiq F, Butcher AM, Salem SS, Brinton SL, Rudman Spergel AK, Johnson K, Jepson B, Calatroni A, David G, Ramirez-Gama M, Taylor P, Leung DYM, Gallo RL. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med, 2021, 27: 700-709

[26]

Nakatsuji T, Gallo RL, Shafiq F, Tong Y, Chun K, Butcher AM, Cheng JY, Hata TR. Use of autologous bacteriotherapy to treat staphylococcus aureus in patients with atopic dermatitis. JAMA Dermatol, 2021, 157: 978

[27]

Hua J, Liu C, Ng PF, Fei B. Bacterial cellulose reinforced double-network hydrogels for shape memory strand. Carbohydr Polym, 2021, 259 117737

[28]

Manan S, Ullah MW, Ul-Islam M, Shi Z, Gauthier M, Yang G. Bacterial cellulose: molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties. Prog Mater Sci, 2022, 129 100972

[29]

Sempionatto JR, Lasalde-Ramirez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem, 2022, 6: 899-915

[30]

Brasier N, Wang J, Gao W, Sempionatto JR, Dincer C, Ates HC, Guder F, Olenik S, Schauwecker I, Schaffarczyk D, Vayena E, Ritz N, Weisser M, Mtenga S, Ghaffari R, Rogers JA, Goldhahn J. Applied body-fluid analysis by wearable devices. Nature, 2024, 636: 57-68

[31]

Ding S, Saha T, Yin L, Liu R, Khan MI, Chang A-Y, Lee H, Zhao H, Liu Y, Nazemi AS, Zhou J, Chen C, Li Z, Zhang C, Earney S, Tang S, Djassemi O, Chen X, Lin M, Sandhu SS, Moon J-M, Moonla C, Nandhakumar P, Park Y, Mahato K, Xu S, Wang J. A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring. Nat Electron, 2024, 7: 788-799

[32]

Keasling J, Martin HG, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol, 2021, 19: 701-715

[33]

Garland NT, Kaveti R, Bandodkar AJ. Biofluid-activated biofuel cells, batteries, and supercapacitors: a comprehensive review. Adv Mater, 2023, 35 e2303197

[34]

Song F, Zhao Q, Zhu T, Bo C, Zhang M, Hu L, Zhu X, Jia P, Zhou Y. Biobased coating derived from fish scale protein and phytic acid for flame-retardant cotton fabrics. Mater Des, 2022, 221 110925

[35]

Yang D, Nam HK, Lee Y, Kwon S, Lee J, Yoon H, Kim YJ. Laser-induced graphene smart textiles for future space suits and telescopes. Adv Funct Mater, 2024, 35: 2411257

[36]

Kim J, Kang SH, Choi Y, Lee W, Kim N, Tanaka M, Kang SH, Choi J. Antibacterial and biofilm-inhibiting cotton fabrics decorated with copper nanoparticles grown on graphene nanosheets. Sci Rep, 2023, 13: 11947

[37]

Yang W, Gong W, Hou C, Su Y, Guo Y, Zhang W, Li Y, Zhang Q, Wang H. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat Commun, 2019, 10: 5541

[38]

Ferri J, Llopis RL, Martinez G, Roger JVL, Garcia-Breijo E. Comparison of e-textile techniques and materials for 3D gesture sensor with boosted electrode design. Sensors, 2020, 20 2369

[39]

Hahn R, Wagner S, Schmitz A, Reichl H. Development of a planar micro fuel cell with thin film and micro patterning technologies. J Power Sources, 2004, 131: 73-78

[40]

Wang W, Jiang Y, Zhong D, Zhang Z, Choudhury S, Lai JC, Gong H, Niu S, Yan X, Zheng Y, Shih CC, Ning R, Lin Q, Li D, Kim YH, Kim J, Wang YX, Zhao C, Xu C, Ji X, Nishio Y, Lyu H, Tok JB, Bao Z. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science, 2023, 380: 735-742

[41]

Chen J, Huang Y, Zhang N, Zou H, Liu R, Tao C, Fan X, Wang ZL. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy, 2016, 1: 16138

[42]

Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C, Zhu L, Sun X, Wang ZL. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv, 2016, 2 e1600097

[43]

Maziz A, Concas A, Khaldi A, Stalhand J, Persson NK, Jager EW. Knitting and weaving artificial muscles. Sci Adv, 2017, 3 e1600327

[44]

Tian X, Lee PM, Tan YJ, Wu TLY, Yao H, Zhang M, Li Z, Ng KA, Tee BCK, Ho JS. Wireless body sensor networks based on metamaterial textiles. Nat Electron, 2019, 2: 243-251

[45]

Li K, Chang TH, Li Z, Yang H, Fu F, Li T, Ho JS, Chen PY. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv Energy Mater, 2019, 9 1901687

[46]

Jeong S-H, Lee Y, Lee M-G, Song WJ, Park J-U, Sun J-Y. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy, 2021, 79(10): 5463

[47]

Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240-245

[48]

Bell F, Ramsahoye M, Coffie J, Tung J, Alistar M. µMe: exploring the human microbiome as an intimate material for living interfaces. In: Proceedings of the 2023 ACM designing interactive systems conference. Pittsburgh, PA, USA: ACM; 2023. pp. 2019.

[49]

Shi J, Kim S, Li P, Dong F, Yang C, Nam B, Han C, Eig E, Shi LL, Niu S, Yue J, Tian B. Active biointegrated living electronics for managing inflammation. Science, 2024, 384: 1023-1030

[50]

Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: a review. Skin Res Technol, 2021, 27: 299-308

[51]

Wu Y, Cao B. Recognition and prediction of individual thermal comfort requirement based on local skin temperature. J Build Eng, 2022, 49 104025

[52]

McLorinan GC, Glenn JV, McMullan MG, Patrick S. Propionibacterium acnes wound contamination at the time of spinal surgery. Clin Orthop Relat Res, 2005

[53]

Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecinska-Pirog J, Walecka-Zacharska E, Radtke L, Gospodarek-Komkowska E. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms, 2021, 9: 543

[54]

Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther, 2024, 9: 237

[55]

Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol, 2018, 16: 143-155

[56]

Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. Microbiome, 2021, 9 125

[57]

Swaney MH, Kalan LR. Living in your skin: microbes, molecules, and mechanisms. Infect Immun, 2021, 89: e00695-e720

[58]

Whiting C, Azim SA, Friedman A. The skin microbiome and its significance for dermatologists. Am J Clin Dermatol, 2024, 25: 169-177

[59]

Jiao Q, Zhi L, You B, Wang G, Wu N, Jia Y. Skin homeostasis: mechanism and influencing factors. J Cosmet Dermatol, 2024, 23: 1518-1526

[60]

Mohammad S, Karim MR, Iqbal S, Lee JH, Mathiyalagan R, Kim YJ, Yang DU, Yang DC. Atopic dermatitis: pathophysiology, microbiota, and metabolome—a comprehensive review. Microbiol Res, 2024, 281 127595

[61]

Dreno B, Dekio I, Baldwin H, Demessant AL, Dagnelie MA, Khammari A, Corvec S. Acne microbiome: from phyla to phylotypes. J Eur Acad Dermatol Venereol, 2024, 38: 657-664

[62]

McLoughlin IJ, Wright EM, Tagg JR, Jain R, Hale JDF. Skin microbiome-the next frontier for probiotic intervention. Probiotics Antimicrob Proteins, 2022, 14: 630-647

[63]

Callewaert C, Knodlseder N, Karoglan A, Guell M, Paetzold B. Skin microbiome transplantation and manipulation: current state of the art. Comput Struct Biotechnol J, 2021, 19: 624-631

[64]

Mazur M, Tomczak H, Lodyga M, Czajkowski R, Zaba R, Adamski Z. The microbiome of the human skin and its variability in psoriasis and atopic dermatitis. Postepy Dermatol Alergol, 2021, 38: 205-209

[65]

Goldenberger D, Sogaard KK, Cuenod A, Seth-Smith H, de Menezes D, Vandamme P, Egli A. Cutibacterium modestum and “Propionibacterium humerusii” represent the same species that is commonly misidentified as Cutibacterium acnes. Antonie Leeuwenhoek, 2021, 114: 1315-1320

[66]

Salamzade R, Swaney MH, Kalan LR. Comparative genomic and metagenomic investigations of the Corynebacterium tuberculostearicum species complex reveals potential mechanisms underlying associations to skin health and disease. Microbiol Spectr, 2023, 11 e0357822

[67]

Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol, 2023, 21: 97-111

[68]

Ahle CM, Stodkilde K, Poehlein A, Bomeke M, Streit WR, Wenck H, Reuter JH, Hupeden J, Bruggemann H. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun Biol, 2022, 5: 923

[69]

Chua W, Poh SE, Li H. Secretory proteases of the human skin microbiome. Infect Immun, 2022, 90 e0039721

[70]

Heo YM, Lee DG, Mun S, Kim M, Baek C, Lee H, Yun SK, Kang S, Han K. Skin benefits of postbiotics derived from Micrococcus luteus derived from human skin: an untapped potential for dermatological health. Genes Genom, 2024, 46: 13-25

[71]

Yang XP, Liu YY, Zhang CY, Huang KK, Han SS, Liang BY, Lin Y. An observational study: association between atopic dermatitis and bacterial colony of the skin based on 16s rRNA gene sequencing. Clin Cosmet Investig Dermatol, 2024, 17: 1649-1659

[72]

Sharquie KE, Jabbar RI. Major outbreak of dermatophyte infections leading into imitation of different skin diseases: trichophyton mentagrophytes is the main criminal fungus. J Turk Acad Dermatol, 2021, 15: 91-100

[73]

Svarcova M, Vetrovsky T, Kolarik M, Hubka V. Defining the relationship between phylogeny, clinical manifestation, and phenotype for Trichophyton mentagrophytes/interdigitale complex; a literature review and taxonomic recommendations. Med Mycol, 2023, 61: myad042

[74]

Aruna GL. Development and diagnostic evaluation of indirect enzyme linked immunosorbent assay for Epidermophyton floccosum infection in humans. Int Immunopharmacol, 2023, 124 110910

[75]

Ianiri G, LeibundGut-Landmann S, Dawson TLJr.. Malassezia : a commensal, pathogen, and mutualist of human and animal skin. Annu Rev Microbiol, 2022, 76: 757-782

[76]

Park M, Park S, Jung WH. Skin commensal fungus malassezia and its lipases. J Microbiol Biotechnol, 2021, 31: 637-644

[77]

Peghin M, Ruiz-Camps I. Recent concepts in fungal involvement in skin and soft tissue infections. Curr Opin Infect Dis, 2022, 35: 103-111

[78]

Seiser S, Arzani H, Ayub T, Phan-Canh T, Staud C, Worda C, Kuchler K, Elbe-Burger A. Native human and mouse skin infection models to study Candida auris -host interactions. Microbes Infect, 2024, 26 105234

[79]

Guan H, Nuth M, Isaacs SN, Xiao Y, Scott RW, Parker MH, Strobel ED, Kulp JL, Bailey TR, Reitz AB, Ricciardi RP. A small molecule that targets the processivity factor of molluscum contagiosum virus has therapeutic potential. Antivir Res, 2023, 211 105520

[80]

McBride AA. Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol, 2022, 20: 95-108

[81]

Novak N, Weighardt H, Valdelvira R, Izquierdo E, Forster I, Cabanillas B. Herpes simplex virus 1 proteins can induce skin inflammation in an atopic dermatitis-like mouse model. Exp Dermatol, 2021, 30: 1699-1704

[82]

Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and human health: current understanding, engineering, and enabling technologies. Chem Rev, 2023, 123: 31-72

[83]

Hawkins S, Dasgupta BR, Ananthapadmanabhan KP. Role of pH in skin cleansing. Int J Cosmet Sci, 2021, 43: 474-483

[84]

Iyer V, Raut J, Dasgupta A. Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro. J Med Microbiol, 2021, 70 001421

[85]

Almoughrabie S, Cau L, Cavagnero K, O'Neill AM, Li F, Roso-Mares A, Mainzer C, Closs B, Kolar MJ, Williams KJ, Bensinger SJ, Gallo RL. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. Sci Adv, 2023, 9: eadg6262

[86]

Casillas-Vargas G, Ocasio-Malave C, Medina S, Morales-Guzman C, Del Valle RG, Carballeira NM, Sanabria-Rios DJ. Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res, 2021, 82 101093

[87]

Bier K, Schittek B. Beneficial effects of coagulase-negative Staphylococci on Staphylococcus aureus skin colonization. Exp Dermatol, 2021, 30: 1442-1452

[88]

Delanghe L, Spacova I, Van Malderen J, Oerlemans E, Claes I, Lebeer S. The role of lactobacilli in inhibiting skin pathogens. Biochem Soc Trans, 2021, 49: 617-627

[89]

Renuka SR, Kumar NA, Manoharan D, Naidu DK. Probiotics: a review on microbiome that helps for better health—a dermatologist’s perspective. J Pharmacol Pharmacother, 2023, 14: 5-13

[90]

Gan Y, Zhang J, Qi F, Hu Z, Sweren E, Reddy SK, Chen L, Feng X, Grice EA, Garza LA, Wang G. Commensal microbe regulation of skin cells in disease. Cell Host Microbe, 2024, 32: 1264-1279

[91]

Maseda D, Manfredo-Vieira S, Payne AS. T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. Discovery Immunology, 2023, 2 kyad024

[92]

Howden BP, Giulieri SG, Lung TWF, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol, 2023, 21: 380-395

[93]

Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function. Science, 2022, 376: 940-945

[94]

Schneider AM, Nolan ZT, Banerjee K, Paine AR, Cong Z, Gettle SL, Longenecker AL, Zhan X, Agak GW, Nelson AM. Evolution of the facial skin microbiome during puberty in normal and acne skin. J Eur Acad Dermatol Venereol, 2023, 37: 166-175

[95]

Rai S, Rai G, Kumar A. Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res, 2022, 260 127044

[96]

Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, Chan N, Wei M, Lovins V, Bugayev J, Horwinski J, Bradley C, Meyer J, Crumrine D, Sutter CH, Elias P, Mauldin E, Sutter TR, Grice EA. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe, 2021, 29: 1235-48.e8

[97]

Klassert TE, Zubiria-Barrera C, Denkel L, Neubert R, Schneegans A, Kulle A, Vester A, Bloos F, Schulze C, Epstude J, Gastmeier P, Geffers C, Slevogt H. Skin dysbiosis and loss of microbiome site specificity in critically ill patients. Microbiol Spectr, 2024, 12 e0307823

[98]

Bjerre RD, Holm JB, Palleja A, Solberg J, Skov L, Johansen JD. Skin dysbiosis in the microbiome in atopic dermatitis is site-specific and involves bacteria, fungus and virus. BMC Microbiol, 2021, 21: 256

[99]

Nakatsuji T, Brinton SL, Cavagnero KJ, O’Neill AM, Chen Y, Dokoshi T, Butcher AM, Osuoji OC, Shafiq F, Espinoza JL, Dupont CL, Hata TR, Gallo RL. Competition between skin antimicrobial peptides and commensal bacteria in type 2 inflammation enables survival ofS. aureus. Cell Rep, 2023, 42: 112494

[100]

Li X, Wang X, Du J, Bu X, Peng C, Duan X, Fu C. Applications of beta-defensins against infectious pathogenic microorganisms. Expert Rev Anti Infect Ther, 2024, 22: 501-510

[101]

Williams MR, Bagood MD, Enroth TJ, Bunch ZL, Jiang N, Liu E, Almoughrabie S, Khalil S, Li F, Brinton S, Cech NB, Horswill AR, Gallo RL. Staphylococcus epidermidis activates keratinocyte cytokine expression and promotes skin inflammation through the production of phenol-soluble modulins. Cell Rep, 2023, 42 113024

[102]

Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing. Small, 2022, 18 e2103734

[103]

Zhang Y, Zhu J, Zhao J, Wang X, Wei T, Gao T. A single-microbe living bioelectronic sensor for intracellular amperometric analysis. Biosens Bioelectron, 2024, 265 116648

[104]

Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol, 2024, 22: 226-239

[105]

Shi S, Ming Y, Wu H, Zhi C, Yang L, Meng S, Si Y, Wang D, Fei B, Hu J. A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv Mater, 2024, 36 e2306435

[106]

Li S, Zhao H, Xu H, Lu H, Luo P, Zhou T. Ultra-flexible stretchable liquid metal circuits with antimicrobial properties through selective laser activation for health monitoring. Chem Eng J, 2024, 482 149173

[107]

Xu C, Song Y, Sempionatto JR, Solomon SA, Yu Y, Nyein HYY, Tay RY, Li J, Heng W, Min J, Lao A, Hsiai TK, Sumner JA, Gao W. A physicochemical-sensing electronic skin for stress response monitoring. Nat Electron, 2024, 7: 168-179

[108]

Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, Gao W. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv, 2020, 6 eaay9842

[109]

Meng K, Liu Z, Xiao X, Manshaii F, Li P, Yin J, Wang H, Mei H, Sun Y, He X, Yang J, Chen J. Bioinspired wearable pulse sensors for ambulant cardiovascular monitoring and biometric authentication. Adv Funct Mater, 2024, 34 2403163

[110]

Heng W, Yin S, Min J, Wang C, Han H, Sani ES, Li J, Song Y, Rossiter HB, Gao W. A smart mask for exhaled breath condensate harvesting and analysis. Science, 2024, 385: 954-961

[111]

Li D, Zhou J, Zhao Z, Huang X, Li H, Qu Q, Zhou C, Yao K, Liu Y, Wu M, Su J, Shi R, Huang Y, Wang J, Zhang Z, Liu Y, Gao Z, Park W, Jia H, Guo X, Zhang J, Chirarattananon P, Chang L, Xie Z, Yu X. Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. Sci Adv, 2024, 10 eadk6301

[112]

Zhang R, Wang M, Zhu T, Wan Z, Chen X, Xiao X. Wireless charging flexible in-situ optical sensing for food monitoring. Chem Eng J, 2024, 488 150808

[113]

Jiang Y, Trotsyuk AA, Niu S, Henn D, Chen K, Shih CC, Larson MR, Mermin-Bunnell AM, Mittal S, Lai JC, Saberi A, Beard E, Jing S, Zhong D, Steele SR, Sun K, Jain T, Zhao E, Neimeth CR, Viana WG, Tang J, Sivaraj D, Padmanabhan J, Rodrigues M, Perrault DP, Chattopadhyay A, Maan ZN, Leeolou MC, Bonham CA, Kwon SH, Kussie HC, Fischer KS, Gurusankar G, Liang K, Zhang K, Nag R, Snyder MP, Januszyk M, Gurtner GC, Bao Z. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol, 2023, 41: 652-662

[114]

Xue H, Jin J, Huang X, Tan Z, Zeng Y, Lu G, Hu X, Chen K, Su Y, Hu X, Peng X, Jiang L, Wu J. Wearable flexible ultrasound microneedle patch for cancer immunotherapy. Nat Commun, 2025, 16 2650

[115]

Zheng B, Li Q, Fang L, Cai X, Liu Y, Duo Y, Li B, Wu Z, Shen B, Bai Y, Cheng SX, Zhang X. Microorganism microneedle micro-engine depth drug delivery. Nat Commun, 2024, 15 8947

[116]

Burton A, Wang Z, Song D, Tran S, Hanna J, Ahmad D, Bakall J, Clausen D, Anderson J, Peralta R, Sandepudi K, Benedetto A, Yang E, Basrai D, Miller LE, Tresch MC, Gutruf P. Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation. Nat Commun, 2023, 14 7887

[117]

Xiao R, Liu D, Zhu C, Xu S, Fernando A, Liu X. A deodorizing textile strategy enabled by ZIF-8 dressed cotton fabric with unprecedent capture of H2S. Adv Mater Technol, 2025, 10 2401619

[118]

Shi S, Si Y, Li Z, Meng S, Zhang S, Wu H, Zhi C, Io WF, Ming Y, Wang D, Fei B, Huang H, Hao J, Hu J. An intelligent wearable filtration system for health management. ACS Nano, 2023, 17(77035-7046

[119]

Pang S, Gao Y, Choi S. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile. Biosens Bioelectron, 2018, 100: 504-511

[120]

Hu Q, Hong M, Wang Z, Lin X, Wang W, Zheng W, Zhou S. Microbial biofilm-based hydrovoltaic pressure sensor with ultrahigh sensitivity for self-powered flexible electronics. Biosens Bioelectron, 2025, 275 117220

[121]

Lee J, Kim KY, Kwon Y, Khang DY. Stretchable enzymatic biofuel cells based on microfluidic structured elastomeric polydimethylsiloxane with wrinkled gold electrodes. Adv Funct Mater, 2023, 34 2309386

[122]

Brasier N, Sempionatto JR, Bourke S, Havenith G, Schaffarczyk D, Goldhahn J, Luscher C, Gao W. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat Biomed Eng, 2024, 8: 925-929

[123]

Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic electrochemical transistors for biomarker detections. Adv Sci, 2024, 11 e2305347

[124]

Liu J, Zhang J, Liu J, Li W, Shen H, Wang L, Ding Y, Liu Y, Li Y, Xu J, Li G. A scalable flexible strain sensor with adaptive response capability to varying microenvironments for digital healthcare. Compos Sci Technol, 2025, 261 111034

[125]

Munoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A gram-negative-selective antibiotic that spares the gut microbiome. Nature, 2024, 630: 429-436

[126]

Zheng L, Cao M, Du Y, Liu Q, Emran MY, Kotb A, Sun M, Ma CB, Zhou M. Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. Nanoscale, 2023, 16: 44-60

[127]

Yu K, Li M, Chai H, Liu Q, Hai X, Tian M, Qu L, Xu T, Zhang G, Zhang X. MOF-818 nanozyme-based colorimetric and electrochemical dual-mode smartphone sensing platform for in situ detection of H2O2 and H2S released from living cells. Chem Eng J, 2023, 451 138321

[128]

Zhi C, Shi S, Zhang S, Si Y, Yang J, Meng S, Fei B, Hu J. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett, 2023, 15 60

[129]

Lin B, Li F, Hui J, Xing Z, Fu J, Li S, Shi H, Liu C, Mao H, Wu Z. Modular reconfigurable approach toward noninvasive wearable body net for monitoring sweat and physiological signals. ACS Sens, 2025, 10: 225-235

[130]

Tong X, Hua T, Xu M, Yang D, Xiao G, Li S, Cao X, Shao Y. An energy-autonomous wearable fabric powered by high-power density sweat-activated batteries for health monitoring. Adv Fiber Mater, 2024, 7: 254-265

[131]

Tao J, Zhao W, Zhou X, Zhang J, Zhang Y, Fan M, Wu M, Liu L, Zhou Z, Zhu H, Xiong J. Robust all-fabric e-skin with high-temperature and corrosion tolerance for self-powered tactile sensing. Nano Energy, 2024, 128 109930

[132]

Khan B, Riaz Z, Ahmad RUS, Khoo BL. Advancements in wearable sensors for cardiovascular disease detection for health monitoring. Mater Sci Eng R Rep, 2024, 159 100804

[133]

Pal S, Kumar D, Ulucan-Karnak F, Narang J, Shukla SK. Bio-inspired electronic sensors for healthcare applications. Chem Eng J, 2024, 499 155894

[134]

Lei ZL, Guo B. 2D Material-based optical biosensor: status and prospect. Adv Sci, 2022, 9 e2102924

[135]

Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev, 2023, 52: 8531-8579

[136]

Zheng M, Sheng T, Yu J, Gu Z, Xu C. Microneedle biomedical devices. Nat Rev Bioeng, 2023, 2: 324-342

[137]

Hu Y-Y, Jin Q, Wang J, Wu S-F, He Y, Jin P-H. Integrated therapeutic strategies for various cutaneous malignancies: advances and challenges of multifunctional microneedle patches toward clinical translation. Chem Eng J, 2024, 494 153033

[138]

Zhang X, Wang Z, Jiang H, Zeng H, An N, Liu B, Sun L, Fan Z. Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds. Sci Adv, 2023, 9 eadh1415

[139]

Li Z, Lu H, Fan L, Ma X, Duan Z, Zhang Y, Fu Y, Wang S, Guan Y, Yang D, Chen Q, Xu T, Yang Y. Microneedle-delivered PDA@Exo for multifaceted osteoarthritis treatment via PI3K-Akt-mTOR pathway. Adv Sci, 2024, 11 e2406942

[140]

Wang Y, Chen Z, Davis B, Lipman W, Xing S, Zhang L, Wang T, Hafiz P, Xie W, Yan Z, Huang Z, Song J, Bai W. Digital automation of transdermal drug delivery with high spatiotemporal resolution. Nat Commun, 2024, 15(1 511

[141]

Lee H, Song S, Yea J, Ha J, Oh S, Jekal J, Hong MS, Won C, Jung HH, Keum H, Han S, Cho JH, Lee T, Jang KI. Vialess heterogeneous skin patch for multimodal monitoring and stimulation. Nat Commun, 2025, 16: 650

[142]

Liu J, Zhang J, Zhao Z, Liu Y, Tam WC, Zheng Z, Wang X, Li Y, Liu Z, Li Y, Li G. A negative-response strain sensor towards wearable microclimate changes for body area sensing networks. Chem Eng J, 2023, 459 141628

[143]

Zhang J, Liu J, Zhao Z, Sun W, Zhao G, Liu J, Xu J, Li Y, Liu Z, Li Y, Li G. Calotropis gigantea fiber-based sensitivity-tunable strain sensors with insensitive response to wearable microclimate changes. Adv Fiber Mater, 2023, 5: 1378-1391

[144]

Shirzaei Sani E, Xu C, Wang C, Song Y, Min J, Tu J, Solomon SA, Li J, Banks JL, Armstrong DG, Gao W. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci Adv, 2023, 9 eadf7388

[145]

Chen Z, Li J, Li T, Fan T, Meng C, Li C, Kang J, Chai L, Hao Y, Tang Y, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, Yu J, Shao Y, Li D, Feng S, Liu WJ, He Y, Ma X, Xie Z, Zhang H. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev, 2022, 9 nwac104

[146]

Xue T, Liang W, Li Y, Sun Y, Xiang Y, Zhang Y, Dai Z, Duo Y, Wu L, Qi K, Shivananju BN, Zhang L, Cui X, Zhang H, Bao Q. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun, 2019, 10: 28

[147]

Guo Z, Cao R, Wang H, Zhang X, Meng F, Chen X, Gao S, Sang DK, Nguyen TH, Duong AT, Zhao J, Zeng YJ, Cho S, Zhao B, Tan PH, Zhang H, Fan D. High-performance polarization-sensitive photodetectors on two-dimensional beta-InSe. Natl Sci Rev, 2021, 9: nwab098

[148]

Wang W, Zhou H, Xu Z, Li Z, Zhang L, Wan P. Flexible conformally bioadhesive mxene hydrogel electronics for machine learning-facilitated human-interactive sensing. Adv Mater, 2024, 36 e2401035

[149]

Kwon K, Kim JU, Won SM, Zhao J, Avila R, Wang H, Chun KS, Jang H, Lee KH, Kim JH, Yoo S, Kang YJ, Kim J, Lim J, Park Y, Lu W, Kim TI, Banks A, Huang Y, Rogers JA. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng, 2023, 7: 1215-1228

[150]

Sun P, Li C, Yang C, Sun M, Hou H, Guan Y, Chen J, Liu S, Chen K, Ma Y, Huang Y, Li X, Wang H, Wang L, Chen S, Cheng H, Xiong W, Sheng X, Zhang M, Peng J, Wang S, Wang Y, Yin L. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat Commun, 2024, 15: 4721

[151]

Liu J, Li Z, Sun M, Zhou L, Wu X, Lu Y, Shao Y, Liu C, Huang N, Hu B, Wu Z, You C, Li L, Wang M, Tao L, Di Z, Sheng X, Mei Y, Song E. Flexible bioelectronic systems with large-scale temperature sensor arrays for monitoring and treatments of localized wound inflammation. Proc Natl Acad Sci USA, 2024, 121 e2412423121

[152]

Wang J, Sun M, Pei X, Zheng L, Ma C, Liu J, Cao M, Bai J, Zhou M. Flexible biofuel cell-in-a-tube (iezTube): an entirely self-contained biofuel cell for wearable green bio-energy harvesting. Adv Funct Mater, 2022, 32 2209697

[153]

Wu H, Zhang Y, Kjøniksen AL, Zhou X, Zhou X. Wearable biofuel cells: advances from fabrication to application. Adv Funct Mater, 2021, 31 2103976

[154]

Ryu J, Landers M, Choi S. A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosens Bioelectron, 2022, 205 114128

[155]

Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol, 2022, 20: 5-19

[156]

Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev, 2024, 53: 1375-1446

[157]

Idris MO, Kim H-C, Yaqoob AA, Ibrahim MNM. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation. Sustain Energy Technol Assess, 2022, 52 102183

[158]

Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. Int J Hydrogen Energy, 2021, 46: 3135-3159

[159]

Zou L, Zhu F, Long ZE, Huang Y. Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. J Nanobiotechnology, 2021, 19: 120

[160]

Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev, 2024, 53: 7875-7938

[161]

Guan X, Xie Y, Liu C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids. Nat Catal, 2024, 7: 475-482

[162]

Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev, 2022, 51: 71-127

[163]

Da Poian AT, Castanho MARB. Da Poian AT, Castanho MARB. Energy conservation in metabolism: the mechanisms of ATP synthesis. Integrative human biochemistry: a textbook for medical biochemistry, 2021, Cham, Springer International Publishing301362

[164]

Kang Z, Wang Y, Song H, Wang X, Zhang YPJ, Zhu Z. A wearable and flexible lactic-acid/O(2) biofuel cell with an enhanced air-breathing biocathode. Biosens Bioelectron, 2024, 246 115845

[165]

Maity D, Guha Ray P, Buchmann P, Mansouri M, Fussenegger M. Blood-glucose-powered metabolic fuel cell for self-sufficient bioelectronics. Adv Mater, 2023, 35 e2300890

[166]

Yang G, Zhang Z, He S, Yuan L, Yang X. Advances in micro/nanomotor linked with bioenzymes: design and applications. Appl Mater Today, 2024, 39 102287

[167]

Chen C, Ding S, Wang J. Materials consideration for the design, fabrication and operation of microscale robots. Nat Rev Mater, 2024, 9: 159-172

[168]

Xiao X. The direct use of enzymatic biofuel cells as functional bioelectronics. eScience, 2022, 2: 1-9

[169]

Oliveira ECV, Salvador DS, Holsback V, Shultz JD, Michniak-Kohn BB, Leonardi GR. Deodorants and antiperspirants: identification of new strategies and perspectives to prevent and control malodor and sweat of the body. Int J Dermatol, 2021, 60: 613-619

[170]

Andraskar J, Yadav S, Kapley A. Challenges and control strategies of odor emission from composting operation. Appl Biochem Biotechnol, 2021, 193: 2331-2356

[171]

Dennler N, Drix D, Warner TPA, Rastogi S, Casa CD, Ackels T, Schaefer AT, van Schaik A, Schmuker M. High-speed odor sensing using miniaturized electronic nose. Sci Adv, 2024, 10 eadp1764

[172]

Liu Y, Jia S, Yiu CK, Park W, Chen Z, Nan J, Huang X, Chen H, Li W, Gao Y, Song W, Yokota T, Someya T, Zhao Z, Li Y, Yu X. Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement. Nat Commun, 2024, 15: 4474

[173]

Chow L, Zhang Q, Huang X, Zhang J, Zhou J, Zhu B, Li J, Huang Y, Zhang B, Li J, Wu P, Gao Y, Gao Z, Zhao G, Yao K, Liu Y, Yip J, Yang Z, Yu X. Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring. Adv Mater, 2025, 37 e2406798

[174]

Liu H, Zhao L, Zhang G, Pan F, Yu W. Mechanics and hierarchical structure transformation mechanism of wool fibers. Text Res J, 2020, 91: 496-507

[175]

Li X, Guo W, Hsu PC. Personal thermoregulation by moisture-engineered materials. Adv Mater, 2024, 36 e2209825

[176]

Liu C, Hu X, Zhou X, Ma Y, Leung PHM, Xin JH, Fei B. Guanidine-containing double-network silks with enhanced tensile and antibacterial property. Int J Biol Macromol, 2023, 244 125470

[177]

Xing T, He A, Huang Z, Luo Y, Zhang Y, Wang M, Shi Z, Ke G, Bai J, Zhao S, Chen F, Xu W. Silk-based flexible electronics and smart wearable textiles: progress and beyond. Chem Eng J, 2023, 474 145534

[178]

Meng D, Garba B, Ren Y, Yao M, Xia X, Li M, Wang Y. Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. Int J Biol Macromol, 2020, 158: 1063-1070

[179]

Tao X, Wang Z, Ren B, Li J, Zhou T, Tan H, Niu X. High-flexible chitosan-based composite membrane with multi-layer biopolymer coatings for anti-bacterial drug delivery and wound healing. Int J Biol Macromol, 2024, 279 134829

[180]

Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev, 2020, 26: 164-180

[181]

Christensen KW, Turner J, Coughenour K, Maghdouri-White Y, Bulysheva AA, Sergeant O, Rariden M, Randazzo A, Sheean AJ, Christ GJ, Francis MP. Assembled cell-decorated collagen (AC-DC) fiber bioprinted implants with musculoskeletal tissue properties promote functional recovery in volumetric muscle loss. Adv Healthc Mater, 2022, 11 e2101357

[182]

Souza EF, Furtado MR, Carvalho CWP, Freitas-Silva O, Gottschalk LMF. Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. Int J Biol Macromol, 2020, 146: 285-289

[183]

Girard VD, Chaussé J, Vermette P. Bacterial cellulose: a comprehensive review. J Appl Polym Sci, 2024, 141 e55163

[184]

Shi C, Quinn EC, Diment WT, Chen EY. Correction to recyclable and (bio)degradable polyesters in a circular plastics economy. Chem Rev, 2024, 124: 11637

[185]

Ding J, Zhao H, Shi S, Su J, Chu Q, Wang H, Fang B, Miah MR, Wang J, Zhu J. High-strength, high-barrier bio-based polyester nanocomposite films by binary multiscale boron nitride nanosheets. Adv Funct Mater, 2024, 34 2308631

[186]

Wang W-Y, Li C-Y, Qi X-D, Yang J-H, Wang Y. Highly anisotropic thermal and electrical conductivities of nylon composite papers with the integration of strength and toughness. J Mater Chem A, 2021, 9: 22982-22993

[187]

Sikdar P, Dip TM, Dhar AK, Bhattacharjee M, Hoque MS, Ali SB. Polyurethane (PU) based multifunctional materials: emerging paradigm for functional textiles, smart, and biomedical applications. J Appl Polym Sci, 2022, 139 e52832

[188]

Li X, Koh KH, Farhan M, Lai KWC. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 2020, 12: 4110-4118

[189]

Shen H, Li Y, Yao W, Yang S, Yang L, Pan F, Chen Z, Yin X. Solvent-free cellulose nanocrystal fluids for simultaneous enhancement of mechanical properties, thermal conductivity, moisture permeability and antibacterial properties of polylactic acid fibrous membrane. Compos B Eng, 2021, 222 109042

[190]

Shi S, Wu Q-Y, Gu L, Zhang K, Yu H. Bio-based (co)polylactide-urethane networks with shape memory behavior at body temperature. RSC Adv, 2016, 6: 79268-79274

[191]

Pawar R, Pathan A, Nagaraj S, Kapare H, Giram P, Wavhale R. Polycaprolactone and its derivatives for drug delivery. Polym Adv Technol, 2023, 34: 3296-3316

[192]

Kuang T, Guo H, Guo W, Liu W, Li W, Saeb MR, Vatankhah-Varnosfaderani M, Sheiko SS. Boosting the strength and toughness of polymer blends via ligand-modulated MOFs. Adv Sci, 2024, 11 e2407593

[193]

Hui Z, Zhang L, Ren G, Sun G, Yu HD, Huang W. Green flexible electronics: natural materials, fabrication, and applications. Adv Mater, 2023, 35 e2211202

[194]

Zhang Q, Zhao G, Li Z, Guo F, Huang Y, Guo G, Wang J, Zhou J, Chow L, Huang X, He X, Gao Y, Gao Z, Yao K, Qiu Y, Zhao Z, Zhang B, Yang Y, Liu Y, Hu Y, Wu M, Li J, Wu P, Xu G, He P, Yang Z, Yu X. Multi-functional adhesive hydrogel as bio-interface for wireless transient pacemaker. Biosens Bioelectron, 2024, 263 116597

[195]

Azani MR, Hassanpour A, Torres T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv Energy Mater, 2020, 10 2002536

[196]

Yi J, Xianyu Y. Gold nanomaterials-implemented wearable sensors for healthcare applications. Adv Funct Mater, 2022, 32 2113012

[197]

Ahirrao DJ, Pal AK, Singh V, Jha N. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J Mater Sci Technol, 2021, 88: 168-182

[198]

Lan L, Li Y, Zhu J, Zhang Q, Wang S, Zhang Z, Wang L, Mao J. Highly flexible polypyrrole electrode with acanthosphere-like structures for energy storage and actuator applications. Chem Eng J, 2023, 455 140675

[199]

Yang Y, Deng H, Fu Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater Chem Front, 2020, 4: 3130-3152

[200]

Wang B, Huang P, Li B, Wu Z, Xing Y, Zhu J, Liu L. Carbon-based nanomaterials electrodes of ionic soft actuators: from initial 1D structure to 3D composite structure for flexible intelligent devices. Small, 2023, 19 e2304246

[201]

Zhi C, Wu H, Hu J. In-situ welding and thermal activation enabled robust nanofibers based triboelectric nanogenerator for sustainable energy harvesting. Nano Energy, 2024, 127 109705

[202]

Chen T, Yang Q, Fang C, Deng S, Xu B. Advanced design for stimuli-reversible chromic wearables with customizable functionalities. Adv Mater, 2025, 37 e2413665

[203]

Xia X, Spadaccini CM, Greer JR. Responsive materials architected in space and time. Nat Rev Mater, 2022, 7: 683-701

[204]

Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S, Tang D, Fan D. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt Express, 2015, 23: 12823-12833

[205]

Xu Y, Shi X, Zhang Y, Zhang H, Zhang Q, Huang Z, Xu X, Guo J, Zhang H, Sun L, Zeng Z, Pan A, Zhang K. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 2020, 11: 1330

[206]

Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic fibers/fabrics for wearables and bioelectronics. Adv Sci, 2022, 9 e2203808

[207]

Yang M, Wu J, Jiang W, Hu X, Iqbal MI, Sun F. Bioinspired and hierarchically textile-structured soft actuators for healthcare wearables. Adv Funct Mater, 2022, 33 2210351

[208]

Barnes M, Sajadi SM, Parekh S, Rahman MM, Ajayan PM, Verduzco R. Reactive 3D printing of shape-programmable liquid crystal elastomer actuators. ACS Appl Mater Interfaces, 2020, 12: 28692-28699

[209]

Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater, 2020, 32 e1902549

[210]

Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater, 2022, 34 e2109355

[211]

Hou Z, Liu X, Tian M, Zhang X, Qu L, Fan T, Miao J. Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. J Mater Chem A, 2023, 11: 17336-17372

[212]

Jiang C, Wang K, Liu Y, Zhang C, Wang B. Application of textile technology in tissue engineering: a review. Acta Biomater, 2021, 128: 60-76

[213]

Aliyana AK, Stylios G. A review on the progress in core-spun yarns (CSYs) based textile TENGs for real-time energy generation, capture and sensing. Adv Sci, 2023, 10 e2304232

[214]

Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M. A route toward smart system integration: from fiber design to device construction. Adv Mater, 2020, 32 e1902301

[215]

Santos AS, Ferreira PJT, Maloney T. Bio-based materials for nonwovens. Cellulose, 2021, 28: 8939-8969

[216]

Chatterjee K, Ghosh TK. 3D printing of textiles: potential roadmap to printing with fibers. Adv Mater, 2020, 32 e1902086

[217]

Biswas MC, Chakraborty S, Bhattacharjee A, Mohammed Z. 4D printing of shape memory materials for textiles: mechanism, mathematical modeling, and challenges. Adv Funct Mater, 2021, 31 2100257

[218]

Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, Li RKY, Hu J, Qu J. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv Mater, 2022, 34 e2107938

[219]

Wu H, Shi S, Zhou H, Zhi C, Meng S, Io WF, Ming Y, Wang Y, Lei L, Fei B, Hao J, Hu J. Stem cell self-triggered regulation and differentiation on polyvinylidene fluoride electrospun nanofibers. Adv Funct Mater, 2024, 34 2309270

[220]

Wu H, Zhi C, Chen Y, Zhou X, Wang C, Lam RHW, Qin T, Fu G, Xiong Z, Huang K, Lin J-H, Shi S, Hu J. Skin-like breathable wound dressings with antimicrobial and hemostatic properties. Giant, 2024, 19 100300

[221]

Wu H, Zhou X, Zhi C, Wang C, Chen Y, Si Y, Yang J, Zhang Q, Lam RHW, Qin T, Fu G, Xiong Z, Hu J. Electroactive asymmetric dressing for spatiotemporal deep burn scarless healing and management. Adv Healthc Mater, 2025, 14 e2404266

[222]

Shi S, Wu H, Zhi C, Yang J, Si Y, Ming Y, Fei B, Hu J. A skin-like nanostructured membrane for advanced wound dressing. Compos B Eng, 2023, 250 110438

[223]

Liu Y, Chen L, Li W, Pu J, Wang Z, He B, Yuan S, Xin J, Huang L, Luo Z, Xu J, Zhou X, Zhang H, Zhang Q, Wei L. Scalable production of functional fibers with nanoscale features for smart textiles. ACS Nano, 2024, 18: 29394-29420

[224]

Chen Y, Deng Z, Ouyang R, Zheng R, Jiang Z, Bai H, Xue H. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy, 2021, 84 105866

[225]

Zhang T, Wang Z, Srinivasan B, Wang Z, Zhang J, Li K, Boussard-Pledel C, Troles J, Bureau B, Wei L. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Appl Mater Interfaces, 2019, 11: 2441-2447

[226]

Ye Z, Li S, Zhao S, Deng L, Zhang J, Dong A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem Eng J, 2021, 420 127680

[227]

Clevenger M, Kim H, Song HW, No K, Lee S. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci Adv, 2021, 7 eabj8958

[228]

Lin R, Kim HJ, Achavananthadith S, Xiong Z, Lee JKW, Kong YL, Ho JS. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun, 2022, 13: 2190

[229]

Shi HH, Pan Y, Xu L, Feng X, Wang W, Potluri P, Hu L, Hasan T, Huang YYS. Sustainable electronic textiles towards scalable commercialization. Nat Mater, 2023, 22: 1294-1303

[230]

Wang C, Zhang Q, Wu H, Zhang S, Zhou X, Li M, Chen Y, Liu W, Du M, Fan J, Chen F, Hu J. Rapidly forming recombinant miniature spidroins hydrogels composed of nanofibrils with tunable mechanical properties for bio 3D printing and biomimetic cellular scaffolds. Adv Funct Mater, 2024, 35 2420059

[231]

Wang Z, Wu T, Wang Z, Zhang T, Chen M, Zhang J, Liu L, Qi M, Zhang Q, Yang J, Liu W, Chen H, Luo Y, Wei L. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun, 2020, 11: 3842

[232]

Shen Y, Wang Z, Wang Z, Wang J, Yang X, Zheng X, Chen H, Li K, Wei L, Zhang T. Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat, 2022, 4 e12318

[233]

Zhang Y, Xia X, Ma K, Xia G, Wu M, Cheung YH, Yu H, Zou B, Zhang X, Farha OK, Xin JH. Functional textiles with smart properties: their fabrications and sustainable applications. Adv Funct Mater, 2023, 33 2301607

[234]

Zhang P, Zhong Q, Qi D, Muller-Buschbaum P. Facile preparation of silk fabrics with enhanced UV radiation shielding and wrinkle resistance by cross-linking light-responsive copolymers. ACS Appl Mater Interfaces, 2022, 14: 27187-27194

[235]

Post ER, Orth M, Russo PR, Gershenfeld N. E-broidery: design and fabrication of textile-based computing. IBM Syst J, 2000, 39: 840-860

[236]

Truong T, Kim J-S, Kim J. Design and optimization of embroidered antennas on textile using silver conductive thread for wearable applications. Fibers Polym, 2021, 22: 2900-2909

[237]

Yang Y, Chen Y, Liu Y, Yin R. Programmable and scalable embroidery textile resistive pressure sensors for integrated multifunctional smart wearable systems. Adv Fiber Mater, 2025, 7: 574-586

[238]

Duan S, Lin Y, Shi Q, Wei X, Zhu D, Hong J, Xiang S, Yuan W, Shen G, Wu J. Highly sensitive and mechanically stable MXene textile sensors for adaptive smart data glove embedded with near-sensor edge intelligence. Adv Fiber Mater, 2024, 6: 1541-1553

[239]

Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron, 2022, 5: 142-156

[240]

Chen G, Fang Y, Zhao X, Tat T, Chen J. Textiles for learning tactile interactions. Nat Electron, 2021, 4: 175-176

[241]

Lin R, Kim HJ, Achavananthadith S, Kurt SA, Tan SCC, Yao H, Tee BCK, Lee JKW, Ho JS. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun, 2020, 11 444

[242]

Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narvaez E, Guder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater, 2022, 7: 887-907

[243]

Chen J, Yi C, Okegbile SD, Cai J, Shen X. Networking architecture and key supporting technologies for human digital twin in personalized healthcare: a comprehensive survey. IEEE Commun Surv Tutor, 2024, 26: 706-746

[244]

de Medeiros MS, Goswami D, Chanci D, Moreno C, Martinez RV. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy, 2021, 87 106155

[245]

Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy, 2020, 70 104528

[246]

Liang X, Zhu M, Li H, Dou J, Jian M, Xia K, Li S, Zhang Y. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater, 2022, 32 2200162

[247]

Zhang J, Chen G, Zhang K, Zhao D, Li Z, Zhong J. Washable and breathable electret sensors based on a hydro-charging technique for smart textiles. ACS Appl Mater Interfaces, 2023, 15: 2449-2458

[248]

Qiu Q, Zhu M, Li Z, Qiu K, Liu X, Yu J, Ding B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 2019, 58: 750-758

[249]

Wang T, Meng J, Zhou X, Liu Y, He Z, Han Q, Li Q, Yu J, Li Z, Liu Y, Zhu H, Sun Q, Zhang DW, Chen P, Peng H, Chen L. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun, 2022, 13 7432

[250]

Wu M, Shao Z, Zhao N, Zhang R, Yuan G, Tian L, Zhang Z, Gao W, Bai H. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science, 2023, 382: 1379-1383

[251]

Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L. Three-dimensional printed thermal regulation textiles. ACS Nano, 2017, 11: 11513-11520

[252]

Zhou Z, Padgett S, Cai Z, Conta G, Wu Y, He Q, Zhang S, Sun C, Liu J, Fan E, Meng K, Lin Z, Uy C, Yang J, Chen J. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron, 2020, 155 112064

[253]

Banerjee H, Leber A, Laperrousaz S, La Polla R, Dong C, Mansour S, Wan X, Sorin F. Soft multimaterial magnetic fibers and textiles. Adv Mater, 2023, 35 e2212202

[254]

Wang X, Cheng J, Wang H. Chronic wound management: a liquid diode-based smart bandage with ultrasensitive pH sensing ability. Microsyst Nanoeng, 2024, 10: 193

[255]

Zhu Z, Lin Z, Zhai W, Kang X, Song J, Lu C, Jiang H, Chen P, Sun X, Wang B, Wang ZS, Peng H. Indoor photovoltaic fiber with an efficiency of 25.53% under 1500 lux illumination. Adv Mater, 2024, 36 e2304876

[256]

Qi L, Cai W, Cui T, Lin B, Feng Z, Gao J, Jiang G, Guo W, Wang C, Fei B, Zhu J, Hu Y, Xing W, Song L. Bioinspired fireproof textiles with hierarchical micropore for radiative cooling and perspiration. Chem Eng J, 2024, 497 154834

[257]

Noor N, Mutalik S, Younas MW, Pragya A, Hu X, Ho CY, Yu KM, Fei B. Sonochemical coating of textiles with zinc oxide: robust, silver-seeded growth on cotton for effective uv shielding. ACS Appl Eng Mater, 2023, 1: 3254-3267

[258]

Ding S, Jin X, Guo J, Kou B, Chai M, Dou S, Jin G, Zhang H, Zhao X, Ma J, Li X, Liu X, Wang B, Zhang X. A biomimetic asymmetric structured intelligent wound dressing with dual-modality humidity-pressure sensing for non-invasive and real-time wound healing monitoring. Adv Fiber Mater, 2024, 7: 156-171

[259]

Darwesh OM, Marzoog A, Matter IA, Okla MK, El-Tayeb MA, Aufy M, Dawoud TM, Abdel-Maksoud MA. Natural dyes developed by microbial-nanosilver to produce antimicrobial and anticancer textiles. Microb Cell Fact, 2024, 23: 189

[260]

Liu R, Xia K, Yu T, Gao F, Zhang Q, Zhu L, Ye Z, Yang S, Ma Y, Lu J. Multifunctional smart fabrics with integration of self-cleaning, energy harvesting, and thermal management properties. ACS Nano, 2024, 18: 31085-31097

[261]

Zhang X, Zhou K, Zhao Z, Lin Y. Printable photonic materials and devices for smart healthcare. Adv Mater, 2025

[262]

Zhao M, Cao L, Bai Q, Lu Y, Li B, Wu W, Ye J, Chen X, Wang Z, Liu B, Mao D. Light-activated nanocatalyst for precise in-situ antimicrobial synthesis via photoredox-catalytic click reaction. Angew Chem Int Ed Engl, 2024, 63 e202408918

[263]

Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-inspired smart antibacterial materials and their biomedical applications. Adv Mater, 2024, 36 e2305940

[264]

Abu-Thabit N. Abu-Thabit N. Natural polymers in micro- and nanoencapsulation for therapeutic and diagnostic applications: part II—polysaccharides and proteins. Nano- and microencapsulation—techniques and applications, 2021, Rijeka, IntechOpen

[265]

Yuan K, Chen Q, Qin M, Gao S, Wang Q, Gao S, Xiong F, Lv Y, Zou R. Micro/nano encapsulated phase change materials: preparation, principle, and emerging advances in medical field. Adv Funct Mater, 2024, 34 2314487

[266]

Parente JF, Sousa VI, Marques JF, Forte MA, Tavares CJ, Xu B. Biodegradable polymers for microencapsulation systems. Adv Polym Technol, 2022, 2022: 4640379

[267]

Valle JAB, Valle RDCSC, Bierhalz ACK, Bezerra FM, Hernandez AL, Arias MJL. Chitosan microcapsules: methods of the production and use in the textile finishing. J Appl Polym Sci, 2021, 138: 50482

[268]

Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, Wentworth A, Riaz A, Zirtiloglu T, Wong K, Ishida K, Fabian N, Jenkins J, Kuosmanen J, Madani W, McNally R, Lai Y, Hayward A, Mimee M, Nadeau P, Chandrakasan AP, Traverso G, Yazicigil RT, Lu TK. Sub-1.4 cm(3) capsule for detecting labile inflammatory biomarkers in situ. Nature, 2023, 620: 386-392

[269]

Nataraj BH, Mallappa RH. Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant Staphylococcus aureus (MRSA). Curr Microbiol, 2021, 78: 2194-2211

[270]

Puan SL, Erriah P, Baharudin MMA, Yahaya NM, Kamil W, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol, 2023, 107: 5569-5593

[271]

Lyu Y, Huang H, Su Y, Ying B, Liu W-C, Dong K, Du N, Langer RS, Gu Z, Nan K. Macroencapsulated bacteria for in vivo sensing and therapeutics. Matter, 2024, 7: 1440-1465

[272]

Lufton M, Bustan O, Eylon Bh, Shtifman-Segal E, Croitoru-Sadger T, Shagan A, Shabtay-Orbach A, Corem-Salkmon E, Berman J, Nyska A, Mizrahi B. Living bacteria in thermoresponsive gel for treating fungal infections. Adv Funct Mater, 2018, 28: 1801581

[273]

Chen H, Cheng Y, Tian J, Yang P, Zhang X, Chen Y, Hu Y, Wu J. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv, 2020, 6: eaba4311

[274]

Wei J, Li Y. CRISPR-based gene editing technology and its application in microbial engineering. Eng Microbiol, 2023, 3 100101

[275]

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther, 2020, 5: 1

[276]

Shen H, Aggarwal N, Cui B, Foo GW, He Y, Srivastava SK, Li S, Seah MZX, Wun KS, Ling H, Hwang IY, Ho CL, Lee YS, Chang MW. Engineered commensals for targeted nose-to-brain drug delivery. Cell, 2025, 188: 1545-62e16

[277]

Manfrao-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, de Morais DG, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol, 2022, 132: 822-840

[278]

Long M, Xu M, Ma Z, Pan X, You J, Hu M, Shao Y, Yang T, Zhang X, Rao Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering inEscherichia coli. Sci Adv, 2020, 6: eaba2383

[279]

Abdali Z, Aminzare M, Chow A, Courchesne NMD. Bacterial collagen-templated synthesis and assembly of inorganic particles. Biomed Mater, 2022, 18 015001

[280]

Walker KT, Li IS, Keane J, Goosens VJ, Song W, Lee KY, Ellis T. Self-pigmenting textiles grown from cellulose-producing bacteria with engineered tyrosinase expression. Nat Biotechnol, 2025, 43: 345-354

[281]

Yang Y, Qu L, Mijakovic I, Wei Y. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact, 2022, 21: 176

[282]

Laurent JM, Jain A, Kan A, Steinacher M, Casimiro NE, Stavrakis S, deMello AJ, Studart AR. Directed evolution of material-producing microorganisms. Proc Natl Acad Sci USA, 2024, 121 e2403585121

[283]

Simoska O, Cummings DA, Gaffney EM, Langue C, Primo TG, Weber CJ, Witt CE, Minteer SD. Enhancing the performance of microbial fuel cells via metabolic engineering of Escherichia coli for phenazine production. ACS Sustain Chem Eng, 2023, 11: 11855-11866

[284]

Rodrigo-Navarro A, Sankaran S, Dalby MJ, del Campo A, Salmeron-Sanchez M. Engineered living biomaterials. Nat Rev Mater, 2021, 6: 1175-1190

[285]

Lim HW, Huang YH, Kyeong G, Park M, Lim CJ. Comparative insights into the skin beneficial properties of probiotic lactobacillus isolates of skin origin. Biomed Res Int, 2022, 2022: 7728789

[286]

Li S, Zhang Y, Liang X, Wang H, Lu H, Zhu M, Wang H, Zhang M, Qiu X, Song Y, Zhang Y. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat Commun, 2022, 13: 5416

[287]

Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. Soft Matter, 2021, 17: 785-809

[288]

Heveran CM, Williams SL, Qiu J, Artier J, Hubler MH, Cook SM, Cameron JC, Srubar WV. Biomineralization and successive regeneration of engineered living building materials. Matter, 2020, 2: 481-494

[289]

Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev, 2024, 53: 8306-8378

[290]

Shanmugam S, Ngo H-H, Wu Y-R. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review. Renew Energy, 2020, 149: 1107-1119

[291]

McBee RM, Lucht M, Mukhitov N, Richardson M, Srinivasan T, Meng D, Chen H, Kaufman A, Reitman M, Munck C, Schaak D, Voigt C, Wang HH. Engineering living and regenerative fungal-bacterial biocomposite structures. Nat Mater, 2022, 21: 471-478

[292]

Romano E, Baumschlager A, Akmeric EB, Palanisamy N, Houmani M, Schmidt G, Ozturk MA, Ernst L, Khammash M, Di Ventura B. Engineering AraC to make it responsive to light instead of arabinose. Nat Chem Biol, 2021, 17: 817-827

[293]

Zhou Y, Kong D, Wang X, Yu G, Wu X, Guan N, Weber W, Ye H. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat Biotechnol, 2022, 40: 262-272

[294]

Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials, 2020, 227 119546

[295]

Ryu MH, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol, 2014, 3: 802-810

[296]

Hoffman SM, Tang AY, Avalos JL. Optogenetics illuminates applications in microbial engineering. Annu Rev Chem Biomol Eng, 2022, 13: 373-403

[297]

He L, Huang Z, Huang K, Chen R, Nguyen NT, Wang R, Cai X, Huang Z, Siwko S, Walker JR, Han G, Zhou Y, Jing J. Optogenetic control of non-apoptotic cell death. Adv Sci, 2021, 8: 2100424

[298]

Gilbert C, Tang TC, Ott W, Dorr BA, Shaw WM, Sun GL, Lu TK, Ellis T. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater, 2021, 20: 691-700

[299]

Reshetnikov VV, Smolskaya SV, Feoktistova SG, Verkhusha VV. Optogenetic approaches in biotechnology and biomaterials. Trends Biotechnol, 2022, 40: 858-874

[300]

Wei J, Jin F. Illuminating bacterial behaviors with optogenetics. Curr Opin Solid State Mater Sci, 2022, 26 101023

[301]

Pu L, Yang S, Xia A, Jin F. Optogenetics manipulation enables prevention of biofilm formation of engineered Pseudomonas aeruginosa on surfaces. ACS Synth Biol, 2018, 7: 200-208

[302]

Lalwani MA, Kawabe H, Mays RL, Hoffman SM, Avalos JL. Optogenetic control of microbial consortia populations for chemical production. ACS Synth Biol, 2021, 10: 2015-2029

[303]

Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, Qiu J, Hua K, Su W, Wu J, Xu H, Han Y, Fu C, Yin Z, Liu M, Roepman R, Dietmann S, Virta M, Kengara F, Zhang Z, Zhang L, Zhao T, Dai J, Yang J, Lan L, Luo M, Liu Z, An T, Zhang B, He X, Cong S, Liu X, Zhang W, Lewis JP, Tiedje JM, Wang Q, An Z, Wang F, Zhang L, Huang T, Lu C, Cai Z, Wang F, Zhang J. Artificial intelligence: a powerful paradigm for scientific research. Innovation, 2021, 2 100179

[304]

Yang CC. Explainable artificial intelligence for predictive modeling in healthcare. J Healthc Inform Res, 2022, 6: 228-239

[305]

Huo D, Wang X. A new era in healthcare: the integration of artificial intelligence and microbial. Med Nov Technol Devices, 2024, 23 100319

[306]

Mann M, Kumar C, Zeng WF, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst, 2021, 12: 759-770

[307]

Lopatkin AJ, Collins JJ. Predictive biology: modelling, understanding and harnessing microbial complexity. Nat Rev Microbiol, 2020, 18: 507-520

[308]

Radivojevic T, Costello Z, Workman K, Martin HG. A machine learning automated recommendation tool for synthetic biology. Nat Commun, 2020, 11: 4879

[309]

Wang C, He T, Zhou H, Zhang Z, Lee C. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med, 2023, 9: 17

[310]

Kothawale AS, Mohite VS, Darade MM, Deshmukh SA, Mondal MIH, Pawar SH. Mondal MIH. Chapter 25—Smart clothing in communication technology—recent development. Smart textiles from natural resources, 2024, Cambridge, Woodhead Publishing799-828

[311]

Khurshid H, Mumtaz R, Alvi N, Haque A, Mumtaz S, Shafait F, Ahmed S, Malik MI, Dengel A. Bacterial prediction using internet of things (IoT) and machine learning. Environ Monit Assess, 2022, 194: 133

[312]

Verma D, Singh KRB, Yadav AK, Nayak V, Singh J, Solanki PR, Singh RP. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens Bioelectron X, 2022, 11 100153

[313]

Prentice C, Weaven S, Wong IA. Linking AI quality performance and customer engagement: the moderating effect of AI preference. Int J Hosp Manag, 2020, 90 102629

[314]

Zhang Y, Jiang H, Ye T, Juhas M. Deep learning for imaging and detection of microorganisms. Trends Microbiol, 2021, 29: 569-572

[315]

Xiang L, Li Y, Zhao D, Xu Y, Cui W. Body-coupled smart fibers: enhancing seamless integration and efficiency in medical human-machine interaction. Innovation, 2024, 5 100674

[316]

Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: new age of wearable technology for healthcare and fitness solutions. Mater Today Bio, 2023, 19 100565

[317]

Pang Q, Yang F, Jiang Z, Wu K, Hou R, Zhu Y. Smart wound dressing for advanced wound management: real-time monitoring and on-demand treatment. Mater Des, 2023, 229 111917

Funding

Hong Kong Polytechnic University(PolyU152189/21E)

The Hong Kong Polytechnic University

RIGHTS & PERMISSIONS

The Author(s)

PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

/