Minuscule ZnV2O4 Entrapped Carbon Nanofiber Composite Cathode for Long-Lasting Aqueous Zn-Ion Batteries

Jeong-Ho Park , Jae Hong Choi , Jae-Woo Seo , Ilgyu Kim , Jong Seok Nam , Joo-Hyung Kim , Hyeong Min Jin , Seon-Jin Choi , Pilgun Oh , Ji-Won Jung

Advanced Fiber Materials ›› : 1 -13.

PDF
Advanced Fiber Materials ›› :1 -13. DOI: 10.1007/s42765-025-00609-7
Research Article
research-article

Minuscule ZnV2O4 Entrapped Carbon Nanofiber Composite Cathode for Long-Lasting Aqueous Zn-Ion Batteries

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries (AZiBs) offer a sustainable, cost-effective, and safe alternative to lithium-ion batteries, yet they face challenges related to cathode limitations, such as low energy density and stability issues. In this study, we report the successful synthesis of minuscule ZnV2O4 nanoparticles uniformly integrated into conductive carbon nanofibers (m-ZnV2O4@CNFs) via electrospinning followed by a reduction heat treatment. Structural and electrochemical analyses demonstrate that this composite considerably improves ionic and electronic conductivity, reduces vanadium dissolution, and preserves structural integrity during extended cycling. In situ X-ray diffraction and Raman spectroscopy analyses reveal a partial structural transformation from the spinel ZnV2O4 phase to a layered vanadate phase, which stably coexists with residual spinel structures, enhancing both capacity and stability. Electrochemical testing demonstrates exceptional cycling stability, with a specific capacity of approximately 175 mAh·g−1 after 600 cycles at 100 mA·g−1, and outstanding longevity over 10,000 cycles at an increased current density of 2 A·g−1. This study provides valuable insights into the design of multifunctional cathode materials, advancing the practical application of AZiBs.

Graphical Abstract

Keywords

Aqueous zinc-ion battery / Zinc vanadium oxide / Electrospinning / Carbon nanofiber / Cathode

Cite this article

Download citation ▾
Jeong-Ho Park, Jae Hong Choi, Jae-Woo Seo, Ilgyu Kim, Jong Seok Nam, Joo-Hyung Kim, Hyeong Min Jin, Seon-Jin Choi, Pilgun Oh, Ji-Won Jung. Minuscule ZnV2O4 Entrapped Carbon Nanofiber Composite Cathode for Long-Lasting Aqueous Zn-Ion Batteries. Advanced Fiber Materials 1-13 DOI:10.1007/s42765-025-00609-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2010, 22: 587

[2]

Ge JM, Fan L, Wang J, Zhang Q, Liu Z, Zhang E, Liu Q, Yu X, Lu B. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv Energy Mater, 2018, 8 1801477

[3]

Liu L, Wu YC, Huang L, Liu K, Duployer B, Rozier P, Taberna PL, Simon P. Alkali ions pre-intercalated layered MnO 2 nanosheet for zinc-ions storage. Adv Energy Mater, 2021, 11: 2101287

[4]

Pasta M, Wessells CD, Huggins RA, Cui Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat Commun, 2012, 3: 1149

[5]

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy, 2016, 1: 16119

[6]

Gourley SWD, Brown R, Adams BD, Higgins D. Zinc-ion batteries for stationary energy storage. Joule, 2023, 7: 1415

[7]

Kundu D, Hosseini Vajargah S, Wan L, Adams B, Prendergast D, Nazar LF. Aqueous: vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci, 2018, 11: 881

[8]

Wang L, Huang K-W, Chen J, Zheng J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv, 2019, 5 eaax4279

[9]

Tay IR, Xue J, Lee WSV. Methods for characterizing intercalation in aqueous zinc ion battery cathodes: a review. Adv Sci, 2023, 10 2303211

[10]

Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Li + intercalated V 2 O 5 ·nH 2 O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci, 2018, 11: 3157

[11]

Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem, 2018, 130: 4007

[12]

Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem, 2019, 131: 16508

[13]

Yong B, Ma D, Wang Y, Mi H, He C, Zhang P. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv Energy Mater, 2020, 10: 2002354

[14]

Liu Y, Li C, Xu J, Ou M, Fang C, Sun S, Qiu Y, Peng J, Lu G, Li Q, Han J, Huang Y. Electroactivation-induced spinel ZnV 2 O 4 as a high-performance cathode material for aqueous zinc-ion battery. Nano Energy, 2020, 67 104211

[15]

Wu TH, Ni KY, Liu BT, Wang SH. Activating ZnV 2 O 4 by an electrochemical oxidation strategy for enhanced energy storage in zinc-ion batteries. ACS Appl Energy Mater, 2022, 5: 10196

[16]

Zhang X, Xue F, Sun X, Hou T, Xu Z, Na Y, An Q, Chen Z, Cai S, Zheng C. High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation as zinc-ion battery cathode. Chem Eng J, 2022, 445 136714

[17]

Wu J, Kuang Q, Zhang K, Feng J, Huang C, Li J, Fan Q, Dong Y, Zhao Y. Spinel Zn 3 V 3 O 8 : a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater, 2021, 41: 297

[18]

Liu S, Liao Y, Liu T, Chen L, Zhang Q. Electrochemical activation of vanadium-based cathodes in aqueous zinc-ion batteries: advances, challenges and prospects. Energy Storage Mater, 2024, 73 103799

[19]

Luo D, He H, Zeng L, Yu H, Li X, Zhang C. Steering in-situ low-voltage phase transition from spinel to layered cathode for high-performance zinc-ion batteries. Energy Storage Mater, 2024, 67 103278

[20]

Dai Y, Zhang C, Li J, Gao X, Hu P, Ye C, He H, Zhu J, Zhang W, Chen R, Zong W, Guo F, Parkin IP, Brett DJL, Shearing PR, Mai L, He G. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv Mater, 2024, 36: 2310645

[21]

Zong W, Li J, Zhang C, Dai Y, Ouyang Y, Zhang L, Li J, Zhang W, Chen R, Dong H, Gao X, Zhu J, Parkin IP, Shearing PR, Lai F, Amine K, Liu T, He G. Dynamical janus interface design for reversible and fast-charging zinc-iodine battery under extreme operating conditions. J Am Chem Soc, 2024, 146: 21377

[22]

Jia H, Liu K, Lam Y, Tawiah B, Xin JH, Nie W, Jiang S. Fiber-based materials for aqueous zinc ion batteries. Adv Fiber Mater, 2023, 5 36

[23]

Cho S-H, Jung J-W, Kim C, Kim I-D. Rational design of 1-D Co 3 O 4 nanofibers@low content graphene composite anode for high performance Li-ion batteries. Sci Rep, 2017, 7: 45105

[24]

Ryu W-H, Jung J-W, Park K, Kim S-J, Kim I-D. Vine-like MoS 2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale, 2014, 6: 10975

[25]

Seo J-W, Park J-H, Jung J-W, Choi S-J. Dual-catalytic activation of Pt and MoS x O y on carbon nanofibers for NO 2 sensors. Sens Actuators B Chem, 2024, 412 135750

[26]

Yoon S-W, Boo D-K, Na H, Kim T-Y, Chang H-S, Park JS, Cho S-H, Jung J-W, Jin HM. Facile encapsulation strategy for uniformly-dispersed catalytic nanoparticles/carbon nanofibers toward advanced Zn–air battery. J Mater Chem A, 2025, 13: 3339

[27]

Jung J-W, Ryu W-H, Yu S, Kim C, Cho S-H, Kim I-D. Dimensional effects of MoS 2 nanoplates embedded in carbon nanofibers for bifunctional Li and Na insertion and conversion reactions. ACS Appl Mater Interfaces, 2016, 8: 26758

[28]

Hao Y, Hu F, Chen Y, Wang Y, Xue J, Yang S, Peng S. Recent progress of electrospun nanofibers for zinc–air batteries. Adv Fiber Mater, 2022, 4: 185

[29]

Shi F, Chen C, Xu Z-L. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv Fiber Mater, 2021, 3: 275

[30]

Cotin G, Heinrich B, Perton F, Kiefer C, Francius G, Mertz D, Freis B, Pichon B, Strub JM, Cianférani S, Ortiz Peña N, Ihiawakrim D, Portehault D, Ersen O, Khammari A, Picher M, Banhart F, Sanchez C, Begin-Colin S. A confinement-driven nucleation mechanism of metal oxide nanoparticles obtained via thermal decomposition in organic media. Small, 2022, 18: 2200414

[31]

Lassenberger A, Grünewald TA, Van Oostrum PDJ, Rennhofer H, Amenitsch H, Zirbs R, Lichtenegger HC, Reimhult E. Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater, 2017, 29: 4511

[32]

Honma K, Yoshinaka M, Hirota K, Yamaguchi O, Asai J, Makiyama Y. Fabrication, microstructure and electrical conductivity of V 2 O 5 ceramics. Mater Res Bull, 1996, 31: 531

[33]

Holder CF, Schaak RE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 2019, 13: 7359

[34]

Yang J, Bissett MA, Dryfe RAW. Investigation of voltage range and self-discharge in aqueous zinc-ion hybrid supercapacitors. Chemsuschem, 2021, 14: 1700

[35]

Dai Y, Zhang C, Li J, Gao X, Hu P, Ye C, He H, Zhu J, Zhang W, Chen R, Zong W, Guo F, Parkin IP, Brett DJL, Shearing PR, Mai L, He G. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv Mater, 2024, 36 2310645

[36]

Oberholzer P, Tervoort E, Bouzid A, Pasquarello A, Kundu D. Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl Mater Interfaces, 2019, 11: 674

[37]

Zhu S, Dai Y, Li J, Ye C, Zhou W, Yu R, Liao X, Li J, Zhang W, Zong W, Chen R, He G, Chao D, An Q. Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. Sci Bulletin, 2022, 67: 1882

[38]

Zhu K, Iu H, Zhang Y, Zhang D, Chen G, Wei Y. Synergetic effects of Al 3+ doping and graphene modification on the electrochemical performance of V 2 O 5 cathode materials. Chemsuschem, 2015, 8: 1017

[39]

Liu C, Neale Z, Zheng J, Jia X, Huang J, Yan M, Tian M, Wang M, Yang J, Cao G. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ Sci, 2019, 12: 2273

[40]

Zong Q, Du W, Liu C, Yang H, Zhang Q, Zhou Z, Atif M, Alsalhi M, Cao G. Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett, 2021, 13: 116

[41]

Feng Z, Zhang Y, Sun J, Liu Y, Jiang H, Cui M, Hu T, Meng C. Dual ions enable vanadium oxide hydration with superior Zn 2+ storage for aqueous zinc-ion batteries. Chem Eng J, 2022

[42]

Baddour-Hadjean R, Marzouk A, Pereira-Ramos JP. Structural modifications of Li x V 2 O 5 in a composite cathode (0 ≤ x < 2) investigated by raman microspectrometry. J Raman Spectrosc, 2012, 43: 153

[43]

McCreery RL. Raman spectroscopy for chemical analysis. Meas Sci Technol, 2001, 12(5653

[44]

Frank O, Zukalova M, Laskova B, Kürti J, Koltai J, Kavan L. Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys Chem Chem Phys, 2012, 14: 14567

[45]

Lee M, Balasingam SK, Jeong HY, Hong WG, Lee HBR, Kim BH, Jun Y. One-step hydrothermal synthesis of graphene decorated V 2 O 5 nanobelts for enhanced electrochemical energy storage. Sci Rep, 2015, 5: 8151

[46]

Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci, 2018, 5: 1700322

[47]

Song Y, Jing L, Wang R, Cui J, Li M, Zhang Y. Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries. J Energy Chem, 2024, 89: 599

[48]

Jung J-W, Kim C, Cheong JY, Kim I-D. Gallium nitride nanoparticles embedded in a carbon nanofiber anode for ultralong-cycle-life lithium-ion batteries. ACS Appl Mater Interfaces, 2019, 11: 44263

Funding

National Research Foundation of Korea (NRF)(RS-2023-00213749)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

/