Molecularly Copper-Coordinated Cellulose Heterogeneous Wettability Surface Induced Efficient Fog Harvesting

Jinping Zhang , Peibo Du , Xiaoyan Li , Weiguang Liu , Chengcheng Li , Yating Ji , Chuan Zeng , Dandan Zong , Zaisheng Cai

Advanced Fiber Materials ›› : 1 -14.

PDF
Advanced Fiber Materials ›› :1 -14. DOI: 10.1007/s42765-025-00602-0
Research Article
research-article

Molecularly Copper-Coordinated Cellulose Heterogeneous Wettability Surface Induced Efficient Fog Harvesting

Author information +
History +
PDF

Abstract

The development of efficient fog-harvesting materials is of great significance for addressing freshwater scarcity. However, conventional materials with hydrophilic/hydrophobic regions frequently struggle with coordinating water droplet capture and transport, resulting in lower water collection efficiency. Herein, an integrated strategy based on the engineering of cellulose molecular modification for achieving high-performance fog harvesting is presented. The well-designed cellulose heterogeneous wettability surface (CWF-Cu), through the coordination of copper ions with nanofibrils and masking-assisted spray technique, significantly facilitates water capture and transport for fog harvesting. The copper ions are introduced into the cotton fabric, endowing it with high hydrophobicity (with a contact angle of approximately 130°) and polarity, which regulates wettability and increases potential nucleation sites. The as-prepared CWF-Cu fabric realizes a superior water collection rate (WCR) of 2672 mg·cm−2·h−1, increasing by 70% compared with those of the conventional hydrophobic materials. Moreover, the CWF-Cu fabric demonstrates stable performance to withstand the impact of water and pollutant flushing, and enhanced mechanical strength and ultraviolet (UV) durability, which ensures the long-term usability of the material. This work provides an efficient route to achieving efficient fog harvesting that addresses water scarcity from the environment.

Keywords

Fog harvesting / Coordination / Copper ions / Hydrophobicity / Cellulose heterogeneous wettability

Cite this article

Download citation ▾
Jinping Zhang, Peibo Du, Xiaoyan Li, Weiguang Liu, Chengcheng Li, Yating Ji, Chuan Zeng, Dandan Zong, Zaisheng Cai. Molecularly Copper-Coordinated Cellulose Heterogeneous Wettability Surface Induced Efficient Fog Harvesting. Advanced Fiber Materials 1-14 DOI:10.1007/s42765-025-00602-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia M, Cai D, Feng J, Zhao P, Li J, Lv R, Li G, Yan L, Huang W, Li Y, Sui Z, Li M, Wu H, Shen Y, Xiao J, Wang D, Chen Q. Biomimetic hygroscopic fibrous membrane with hierarchically porous structure for rapid atmospheric water harvesting. Adv Funct Mater, 2023, 33. 2214813

[2]

Yu Z, Li Y, Zhang Y, Xu P, Lv C, Li W, Maryam B, Liu X, Tan SC. Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production. Nat Commun, 2024, 15: 6081.

[3]

Zhang S, Zhou X, Nie Z, Su C, Lu Q, Wei J, Liu T, Chi M, Luo B, Liu Y, Cai C, Wang J, Gao C, Wang S, Nie S. Smart lanceolate surface with fast fog-digesting performance for triboelectric energy harvesting. ACS Nano, 2024, 18: 21316.

[4]

Lord J, Thomas A, Treat N, Forkin M, Bain R, Dulac P, Behroozi CH, Mamutov T, Fongheiser J, Kobilansky N, Washburn S, Truesdell C, Lee C, Schmaelzle PH. Global potential for harvesting drinking water from air using solar energy. Nature, 2021, 598: 611.

[5]

Lu H, Shi W, Zhang JH, Chen AC, Guan W, Lei C, Greer JR, Boriskina SV, Yu G. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv Mater, 2022, 34. 2205344

[6]

Ji Y, Yang W, Li X, Hou K, Du P, Zhao H, Fan Z, Xu B, Cai Z. Thermodynamically induced interfacial condensation for efficient fog harvesting. Small, 2023, 19: 2304037.

[7]

Wang Y, Zhao W, Han M, Guan L, Han L, Hemraj A, Tam MK. Sustainable superhydrophobic surface with tunable nanoscale hydrophilicity for water harvesting. Angew Chem Int Ed, 2021, 61. e202115238

[8]

Huang K, Si Y, Hu J. Fluid unidirectional transport induced by structure and ambient elements across porous materials: from principles to applications. Adv Mater, 2024, 36. 2402527

[9]

Wang Y, Zhao W, Han M, Guan L, Han L, Hemraj A, Tam KC. Sustainable superhydrophobic surface with tunable nanoscale hydrophilicity for water harvesting applications. Angew Chem Int Ed, 2022, 61. e202115238

[10]

Zhu P, Chen R, Zhou C, Tian Y, Wang L. Asymmetric fibers for efficient fog harvesting. Chem Eng J, 2021, 415. 128944

[11]

Ji Y, Yang W, Li X, Chen Y, Xu B, Cai Z. A molecular confine-induced charged fiber for fog harvesting. Adv Fiber Mater, 2025, 7: 172.

[12]

Yang E, Ma C, Luo Y-Q, Liu L, Zheng S, Yao X, Ju J. Highly efficient fog harvesting system achieved on slippery micro-grooved cones. Sci China Mater, 2024, 67: 1574.

[13]

Ji Y, Yang W, Li X, Xue Y, Wang J, Chen Y, Xu B, Cai Z. Nanoscale drag reduction effect enables efficient fog harvesting. Adv Funct Mater, 2024, 34. 2411083

[14]

Liu TL, Kim C-JC. Turning a surface superrepellent even to completely wetting liquids. Science, 2014, 346: 1096.

[15]

Fu S, Zhao J, Zhou Y, Pei K, Guo Z. Bioinspired 1D anisotropic double-spiral metal wires for efficient fog harvesting. Small, 2025, 21: 2408878.

[16]

Zhang S, Chi M, Mo J, Liu T, Liu Y, Fu Q, Wang J, Luo B, Qin Y, Wang S, Nie S. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat Commun, 2022, 13: 4168.

[17]

Wei H, Qin B, Luo H, Zhou X, Wang X, Mei Y. Efficient fog harvesting system inspired by cactus spine and spider silk with vertical crisscross spindle structure. Chem Eng J, 2025, 507. 160747

[18]

Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 2016, 532: 85.

[19]

Han Z, Wang J, Liu S, Zhang Q, Liu Y, Tan Y, Luo S, Guo F, Ma J, Li P, Ming X, Gao C, Xu Z. Electrospinning of neat graphene nanofibers. Adv Fiber Mater, 2022, 4: 268.

[20]

Parker AR, Lawrence CR. Water capture by a desert beetle. Nature, 2001, 414: 33.

[21]

Zhang Y, Meng N, Babar AA, Wang X, Yu J, Ding B. Multi-bioinspired and multistructural integrated patterned nanofibrous surface for spontaneous and efficient fog collection. Nano Lett, 2021, 21: 7806.

[22]

Liang ZH, Feng R, Wu JM, Li D, Wang F, Wang XL, Wang YZ, Song F. Temperature-gradient-induced enhanced fog collection on polymer brush surfaces. Chem Eng J, 2023, 455. 140785

[23]

Chen X, Xu C, Wei T, Chen Z, Liu Y, Huang J, Guo Z. Progress in generating power coupled with atmospheric water harvesting. Nano Today, 2025, 61. 102661

[24]

Zhang Y, Zhu C, Shi J, Yamanaka S, Morikawa H. Bioinspired composite materials used for efficient fog harvesting with structures that consist of fungi-mycelia networks. ACS Sustain Chem Eng, 2022, 10: 12529.

[25]

Bai H, Wang L, Ju J, Sun R, Zheng Y, Jiang L. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv Mater, 2014, 26: 5025.

[26]

wang X, xu c, li s, guo z. An atmospheric water collection system by a hygroscopic process. Surfac Interfac, 2024, 46. 103891

[27]

Wang J, Chen Z, Feng L, Yu F, Ran C, Xu N, Jia Z, Li C, Zheng Y, Shi W, Li M. Plants transpiration-inspired antibacterial evaporator with multiscale structure and low vaporization enthalpy for solar steam generation. Nano Energy, 2023, 114. 108631

[28]

Zhang P, Zhang S, Li X, Liu T, Zhao T, Wang J, Luo B, Cai C, Liu Y, Shao Y, Du G, Wang S, Nie S. Biomimetic superhydrophobic triboelectric surface prepared by interfacial self-assembly for water harvesting. Adv Funct Mater, 2025, 35. 2413201

[29]

Song J, Liu J, Li M, Li S, Kappl M, Butt H-J, Hou Y, Yeung KL. Hierarchically branched siloxane brushes for efficient harvesting of atmospheric water. Small, 2023, 19: 2301561.

[30]

Yao J, Zuo H, Bi J, Liu Y, Wu H, Yuan J, Chen Y, Liao Y, Zhang W. Tillandsia-inspired asymmetric covalent organic framework membranes for unidirectional low-friction water collection. Angew Chem Int Ed, 2025, 64. e202418896

[31]

Cheng Y, Wang M, Sun J, Liu M, Du B, Liu Y, Jin Y, Wen R, Lan Z, Zhou X, Ma X, Wang Z. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection. Nano Lett, 2021, 21: 7411.

[32]

Li CX, Zhong FY, Guo CY, Zhang QJ, Chen JP, Zhong LB, Zheng YM. A janus fibrous membrane with asymmetric wettability and surface potential for dual enhanced fog collection from the atmosphere. Sep Purif Technol, 2025, 361. 131378

[33]

LaPotin A, Zhong Y, Zhang L, Zhao L, Leroy A, Kim H, Rao SR, Wang EN. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule, 2021, 5: 166.

[34]

Xiaorui K, Cong Z, Pin X, Zhanwen D, Zhijiang C. Copper ion-imprinted bacterial cellulose for selectively removing heavy metal ions from aqueous solution. Cellulose, 2022, 29: 4001.

[35]

Zhang P, Huang H, Wang X, Cai K, Chen J, Xu Y, Yu F, Nie S, Wang S, Liu X. Anti-moisture, anti-bacterial cellulosic triboelectric materials enabled by hydroxyl coordination effect. Nano Energy, 2024, 124. 109472

[36]

Yang S, Chen L, Liu S, Hou W, Zhu J, Zhao P, Zhang Q. Facile and sustainable fabrication of high-performance cellulose sponge from cotton for oil-in-water emulsion separation. J Hazard Mater, 2021, 408. 124408

[37]

Yang C, Wu Q, Xie W, Zhang X, Brozena A, Zheng J, Garaga MN, Ko BH, Mao Y, He S, Gao Y, Wang P, Tyagi M, Jiao F, Briber R, Albertus P, Wang C, Greenbaum S, Hu Y-Y, Isogai A, Winter M, Xu K, Qi Y, Hu L. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598: 590.

[38]

Wang J, Yi S, Yang Z, Chen Y, Jiang L, Wong C-P. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Appl Mater Interfaces, 2020, 12: 21080.

[39]

Gao Y, Wang J, Xia W, Mou X, Cai Z. Reusable hydrophilic-superhydrophobic patterned weft backed woven fabric for high-efficiency water-harvesting application. ACS Sustain Chem Eng, 2018, 6: 7216.

[40]

Peng Z, Fu Y, Guo Z. Origami-like 3D fog water harvestor with hybrid wettability for efficient fog harvesting. ACS Appl Mater Interfaces, 2023, 15: 38110.

[41]

Yu Z, Zhang H, Huang J, Li S, Zhang S, Cheng Y, Mao J, Dong X, Gao S, Wang S, Chen Z, Jiang Y, Lai Y. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting. J Mater Sci Technol, 2021, 61: 85.

[42]

Wang Y, Wang X, Lai C, Hu H, Kong Y, Fei B, Xin JH. Biomimetic water-collecting fabric with light-induced superhydrophilic bumps. ACS Appl Mater Interfaces, 2016, 8: 2950.

[43]

Song S, Zhang Y, Yu T, Yang J. A new Janus mesh membrane with ultrafast directional water transportation and improved fog collection. J Mater Sci Technol, 2024, 202: 129.

[44]

Cheng ZJ, Qu JP, Liu YJ, Wu WJ, He PC, Li S, Zhao J, Mo JL. Enhancing atmospheric water harvesting on hydrophilic-superhydrophobic hybrid surfaces through wettability gradient and synergistic diversion channel. Mater Today Phys, 2025, 52. 101691

[45]

Zhang J, Li B, Zhou Z, Zhang J. Durable superhydrophobic surfaces with self-generated wenzel sites for efficient fog collection. Small, 2024, 20: 2312112.

[46]

Zhou H, Jing X, Li S, Guo Z. Near-bulge oil meniscus-induced migration and condensation of droplets for water collection: energy saving, generalization and recyclability. Chem Eng J, 2021, 417. 129215

[47]

Feng J, Zhong L, Guo Z. Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chem Eng J, 2020, 388. 124283

[48]

Tang X, Liu H, Xiao L, Zhou M, Bai H, Fang J, Cui Z, Cheng H, Li G, Zhang Y, Cao M. A hierarchical origami moisture collector with laser-textured microchannel array for a plug-and-play irrigation system. J Mater Chem A, 2021, 9: 5630.

Funding

National Natural Science Foundation of China(Grant No.22176031)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

/