Floatable S-scheme Bi4O5Br2/C3N4/Carbon Fiber Cloth with Robust Internal Electric Field for Efficient Photocatalytic Antibiotic Decontamination

Shijie Li , Yiqian Zhao , Xinlei Zhang , Yanping Liu , Tong Liu , Wenyao Li , Yanping Hou , Wei Jiang , Bin Zhang

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 2032 -2047.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :2032 -2047. DOI: 10.1007/s42765-025-00601-1
Research Article
research-article

Floatable S-scheme Bi4O5Br2/C3N4/Carbon Fiber Cloth with Robust Internal Electric Field for Efficient Photocatalytic Antibiotic Decontamination

Author information +
History +
PDF

Abstract

Sunlight-driven catalysis has been recognized as a prospective strategy to achieve efficient wastewater purification, but its widespread adoption is hampered by persistent challenges, including unsatisfactory catalytic performance and difficult recovery of powdery catalysts. Addressing these limitations, we present a self-floating S-scheme Bi4O5Br2/C3N4/carbon fiber cloth (BiBr/CN/CC) heterojunction-a robust, recyclable photocatalyst engineered for safe and efficient degradation of aquaculture antibiotics. This hierarchical architecture features a conductive carbon fiber cloth (CC) core enveloped by Bi4O5Br2/C3N4 (BiBr/CN) nanosheets, synergistically combining buoyancy, practical recoverability, and superior photocatalytic performance. The S-scheme configuration between Bi4O5Br2 and C3N4 directs photogenerated electrons from BiBr to CN via a robust internal electric field (IEF), preserving optimal redox capacities, contributing to abundant ROS generation for photoreactions. Accordingly, BiBr/CN/CC displays the exceptional photocatalytic activity for oxytetracycline (OTC) destruction, with an OTC destruction rate of (0.0120 min‒1), significantly exceeding BiBr/CC (0.0085 min‒1) and CN/CC (0.0051 min‒1) by 0.4 and 1.4 times, respectively. More significantly, BiBr/CN/CC manifests excellent practicality due to its effortless recovery and operation, excellent robustness, and good environmental adaptability. Furthermore, the OTC decomposition process and intermediates’ eco-toxicity, along with the photocatalysis mechanism are thoroughly explored. This research underscores the significance of devising self-floating, recyclable and high-performance photocatalysts for water decontamination.

Graphical Abstract

A floatable macroscopic Bi4O5Br2/C3N4/carbon fiber cloth heterojunction was engineered to address the critical challenges of unsatisfactory catalytic performance and recyclability in photocatalytic water purification. This innovative architecture integrates Bi4O5Br2 nanosheets and C3N4 layers onto a carbon cloth, synergizing the advantages of a hierarchical structure, built-in buoyancy, and S-scheme charge transfer dynamics. This fabric manifests intriguing prospects for practical application, advancing the design of recyclable S-scheme heterojunctions for environmental remediation

Keywords

Bi4O5Br2/C3N4/carbon fiber cloth / S-scheme / Recyclable / Photocatalysis / Antibiotic removal

Cite this article

Download citation ▾
Shijie Li, Yiqian Zhao, Xinlei Zhang, Yanping Liu, Tong Liu, Wenyao Li, Yanping Hou, Wei Jiang, Bin Zhang. Floatable S-scheme Bi4O5Br2/C3N4/Carbon Fiber Cloth with Robust Internal Electric Field for Efficient Photocatalytic Antibiotic Decontamination. Advanced Fiber Materials, 2025, 7(6): 2032-2047 DOI:10.1007/s42765-025-00601-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Loffler P, Escher BI, Baduel C, Virta MP, Lai FY. Antimicrobial transformation products in the aquatic environment: Global occurrence, ecotoxicological risks, and potential of antibiotic resistance. Environ Sci Technol, 2023, 57: 9474

[2]

Previšić A, Vilenica M, Vučković N, Petrović M, Rožman M. Aquatic insects transfer pharmaceuticals and endocrine disruptors from aquatic to terrestrial ecosystems. Environ Sci Technol, 2021, 55: 3736

[3]

Sun H, Liu Y, Wu C, Ma LQ, Guan D, Hong H, Yu H, Lin H, Huang X, Gao P. Dihalogenated nitrophenols in drinking water: prevalence, resistance to household treatment, and cardiotoxic impact on zebrafish embryo. Eco-Environ Health, 2024, 3: 183

[4]

Rivadeneira-Mendoza BF, Quiroz-Fernández LS, Silva FFD, Luque R, Balu AM, Rodríguez-Díaz JM. Biomass@MOF nanohybrid materials for competitive drug adsorption: analysis by conventional macroscopic models and statistical physical models. Environ Sci: Nano, 2024, 11: 1543

[5]

Narayanan M, El-sheekh M, Ma Y, Pugazhendhi A, Natarajan D, Kandasamy G, Raja R, Kumar RMS, Kumarasamy S, Sathiyan G, Geetha R, Paulraj B, Liu G, Kandasamy S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. Environ Pollut, 2022, 300 118922

[6]

Medeiros R, Fava NMN, Freitas BLS, Paz LPS, Hoffmann MT, Davis J, Fernandez-Ibanez P, Byrne JA. Drinking water treatment by multistage filtration on a household scale: efficiency and challenges. Water Res, 2020, 178 115816

[7]

Ren C, Bai R, Chen W, Li J, Zhou X, Tian X, Zhao F. Advances in nanomaterial-microbe coupling system for removal of emerging contaminants. Chem Res Chinese Univ, 2023, 39: 389

[8]

Li Y, Zhang D, Wang P, Qu J, Zhan S. Superoxide radicals mediated by high-spin Fe catalysis for organic wastewater treatment. Proc Natl Acad Sci U S A, 2024

[9]

Wu S, Peng J, Lee SLJ, Niu X, Jiang Y, Lin S. Let the two sides of the same coin meet-environmental health and safety-oriented development of functional nanomaterials for environmental remediations. Eco-Environ Health, 2024, 3: 494

[10]

Yang H, Li C, Liu T, Fellowes T, Chong SY, Catalano L, Bahri M, Zhang W, Xu Y, Liu L, Zhao W, Gardner AM, Clowes R, Browning ND, Li X, Cowan AJ, Cooper AI. Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. Nat Nanotechnol, 2023, 18: 307

[11]

Pornrungroj C, Annuar ABM, Wang Q, Rahaman M, Bhattacharjee S, Andrei V, Reisner E. Hybrid photothermal-photocatalyst sheets for solar-driven overall water splitting coupled to water purification. Nat Water, 2023, 1(11 952

[12]

Tang Y, Zhou W, Shang Q, Guo Y, Hu H, Li Z, Zhang Y, Liu L, Wang H, Tan X, Yu T, Ye J. Discerning the mechanism of expedited interfacial electron transformation boosting photocatalytic hydrogen evolution by metallic 1T-WS2-induced photothermal effect. Appl Catal, B, 2022, 310 121295

[13]

Gao M, Sun Z, Gong Y, Yu G, Feng Y. Construction of Bi2O2(OH)Cl/Bi/Bi2O3 heterojunction with enhanced photocatalytic H2O2 production performance. J Liaocheng Univ Nat Sci Ed, 2024, 37: 39-48

[14]

Xia Y, Zhang K, Yang H, Shi L, Yi Q. Improving photocatalytic H2O2 production over iCOF/Bi2O3 s-scheme heterojunction in pure water via dual channel pathways. Acta Phys Chim Sin, 2024, 40 2407012

[15]

Zhang W, Liu G. Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts. Chin J Catal, 2024, 66: 76

[16]

Rahaman M, Andrei V, Wright D, Lam E, Pornrungroj C, Bhattacharjee S, Pichler CM, Greer HF, Baumberg JJ, Reisner E. Solar-driven liquid multi-carbon fuel production using a standalone perovskite-BiVO4 artificial leaf. Nat Energy, 2022, 8: 629

[17]

Andrei V, Ucoski GM, Pornrungroj C, Uswachoke C, Wang Q, Achilleos DS, Kasap H, Sokol KP, Jagt RA, Lu H, Lawson T, Wagner A, Pike SD, Wright DS, Hoye RLZ, MacManus-Driscoll JL, Joyce HJ, Friend RH, Reisner E. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature, 2022, 608: 518

[18]

Wang Z, Sun Z, Yin H, Wei H, Peng Z, Pang YX, Jia G, Zhao H, Pang CH, Yin Z. The role of machine learning in carbon neutrality: catalyst property prediction, design, and synthesis for carbon dioxide reduction. eScience, 2023, 3 100136

[19]

Žibert T, Likozar B, Huš M. Modelling photocatalytic N2 reduction to ammonia: where we stand and where we are going. Chemsuschem, 2024, 17 e202301730

[20]

Jeon I, Ryberg EC, Alvarez PJJ, Kim J-H. Technology assessment of solar disinfection for drinking water treatment. Nat Sustain, 2022, 5: 801

[21]

Fu C, Li D, Zhang J, Guo W, Yang H, Zhao B, Chen Z, Fu X, Liang Z, Jiang L. Vertical 3D printed Pd/TiO2 arrays for high efficiency photo-assisted catalytic water treatment. Chem Res Chinese Univ, 2023, 39: 891

[22]

Lin Z, Xie W, Zhu M, Wang C, Guo J. Boosting photocatalytic hydrogen evolution enabled by SiO2-supporting chiral covalent organic frameworks with parallel stacking sequence. Chin J Catal, 2024, 64: 87

[23]

Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev, 2024, 53: 3002

[24]

Loeb SK, Alvarez PJJ, Brame JA, Cates EL, Choi W, Crittenden J, Dionysiou DD, Li Q, Li-Puma G, Quan X, Sedlak DL, Waite TD, Westerhoff P, Kim J-H. The technology horizon for photocatalytic water treatment: sunrise or sunset?. Environ Sci Technol, 2019, 53: 2937

[25]

Yu Y, Yu Y, Wu H, Shi J, Morikawa H, Zhu C. A trimode self-cleaning composite membrane with an eco-friendly substrate for energy-saving wastewater recycling. Adv Fiber Mater, 2024, 6: 1495

[26]

Zhang J, Tang X, Hong Y, Chen G, Chen Y, Zhang L, Gao W, Zhou Y, Sun B. Carbon-based single-atom catalysts in advanced oxidation reactions for water remediation: from materials to reaction pathways. Eco-Environ Health, 2023, 2: 47

[27]

Yang Y, Guo L, Wang X, Li Z, Zhou W. Halogen modified organic porous semiconductors in photocatalysis: mechanism, synthesis and application. Adv Powder Mater, 2024, 3 100178

[28]

Song X, Li X, Zhu B, Sun S, Chen Z, Zhang L. MnO2/poly-L-lysine co-decorated carbon fiber cloth with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv Fiber Mater, 2024, 6: 1569

[29]

Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional fiber membranes with antibacterial properties for face masks. Adv Fiber Mater, 2023, 5: 1519

[30]

Santos AJD, Barazorda-Ccahuana HL, Caballero-Manrique G, Chérémond Y, Espinoza-Montero PJ, González-Rodríguez JR, Jáuregui-Haza UJ, Lanza MRV, Nájera A, Oporto C, Parada AP, Pérez T, Quezada VD, Rojas V, Sosa V, Thiam A, Torres-Palma RA, Vargas R, Garcia-Segura S. Accelerating innovative water treatment in Latin America. Nat Sustain, 2023, 6: 349

[31]

Dong XA, Cui Z, Shi X, Yan P, Wang Z, Co AC, Dong F. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation. Angew Chem Int Ed, 2022, 134 e202200937

[32]

Yue JY, Pan ZX, Yang P, Tang B. Bi4O5Br2/COF S-scheme heterojunctions for boosting H2O2 photoproduction under air and pure water. ACS Mater Lett, 2024, 6: 3932

[33]

Wu Z, Shen J, Ma N, Li Z, Wu M, Xu D, Zhang S, Feng W, Zhu Y. Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Appl Catal, B, 2021, 286 119937

[34]

Zhang B, Tan G, Xia A, Wang Z, Wu X, Guo L, Zeng C, Liu Y, Liu T, Yang Q, Yin L, Liu W, Ren H, Fan S. Dual strategies for enhancing piezoelectric catalytic ability of energy storage BiOBr@Bi4O5Br2 heterojunction: interfacial electric field and intrinsic polarization electric field. Appl Catal, B, 2024, 352 124021

[35]

Li S, You C, Yang F, Liang G, Zhuang C, Li X. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants. Chin J Catal, 2025, 68: 259

[36]

Li S, Dong K, Cai M, Li X, Chen X. A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience, 2024, 4 100208

[37]

Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

[38]

Molaei MJ. Principles, mechanism, and identification of S-scheme heterojunction for photocatalysis: a critical review. J Am Ceram Soc, 2024, 107: 5695

[39]

Yan J, Wei L. 2D s-scheme heterojunction photocatalyst. Acta Phys Chim Sin, 2024, 40 2312024

[40]

Swift E. A durable semiconductor photocatalyst. Science, 2019, 365: 320

[41]

Wang J, Wang S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental applicationapplication. Coordin Chem Rev, 2022, 453 214338

[42]

Khan MA, Mutahir S, Humayun M. Recent advances over the doped g-C3N4 in photocatalysis: a review. Coord Chem Rev, 2025, 522 216227

[43]

Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8 76

[44]

Majdoub M, Sengottuvelu D, Nouranian S, Al-Ostaz A. Graphitic carbon nitride quantum dots (g-C3N4 QDs): From chemistry to applications. Chemsuschem, 2024, 17 e202301462

[45]

Shen X, Zhang T, Xu P, Zhang L, Liu J, Chen Z. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Appl Catal, B, 2017, 219: 425

[46]

Wang H, Chen Z, Shang Y, Lv C, Zhang X, Li F, Huang Q, Liu X, Liu W, Zhao L, Ye L, Xie H, Jin X. Boosting carrier separation on a BiOBr/Bi4O5Br2 direct z-scheme heterojunction for superior photocatalytic nitrogen fixation. ACS Catal, 2024, 14: 5779

[47]

Moon HS, Hsiao KC, Wu MC, Yun Y, Hsu YJ, Yong K. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge transfer mechanism. Adv Mater, 2022

[48]

Yang S, Wang K, Wu Z, Wu Y. Probing charge transfer of NiCo2O4/g-C3N4 photocatalyst for hydrogen production. J Mater Sci Technol, 2024, 200: 253

[49]

Wierzyńska E, Korytkowska K, Kazimierczuk K, Łęcki T, Zarębska K, Korona KP, Pisarek M, Furtak B, Skompska M. The role of boron dopant in the improvement of electron transfer in g-C3N4 photocatalyst. J Phys Chem C, 2024, 128: 894

[50]

Sun X, Li L, Jin S, Shao W, Wang H, Zhang X, Xie Y. Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions. eScience, 2023, 3 100095

[51]

Zhao Y, Zhang Y, Xu Q, Gong H, Yan M, Feng K, Zhou X, Zhou X, Zhang D. Enhanced piezoelectricity and spectral absorption in Nd-doped bismuth titanate hierarchical microspheres for efficient piezo-photocatalytic H2 production and pollutant degradation. J Mater Chem A, 2024, 12: 1753

[52]

Wang CL, Liu NZ, Zhao X, Tian Y, Chen XW, Zhang YF, Fan L, Hou BR. C-doped BiOCl/Bi2S3 heterojunction for highly efficient photoelectrochemical detection and photocatalytic reduction of Cr(VI). J Mater Sci Technol, 2023, 164: 188

[53]

Tian J, Zhang Y, Shi Z, Liu Z, Zhao Z, Li J, Li N, Huang H. Enabling interfacial lattice matching by selective epitaxial growth of CuS crystals on Bi2WO6 nanosheets for efficient CO2 photoreduction into solar fuels. Angew Chem Int Ed, 2025, 64 e202418496

[54]

Xue Q, Lin H, Feng Q, Yang Y, Dong M, Hu K, Song B, Goh PS, Shen X. Synergistic photocatalysis and fenton-like process driven by a biochar-supported biochar/iron hydroxide oxide/bismuth molybdate S-type heterojunction for tetracycline degradation: mechanistic insights and degradation pathways. Appl Surf Sci, 2025, 679 161277

[55]

You C, Wang C, Cai M, Liu Y, Zhu B, Li S. Improved photo-carrier transfer by an internal electric field in BiOBr/N-rich C3N5 3D/2D S-scheme heterojunction for efficiently photocatalytic micropollutant removal. Acta Phys Chim Sin, 2024, 40 2407014

[56]

Malefane ME, Managa M, Nkambule TTI, Kuvarega AT. S-scheme 3D/3D Bi/BiOBr/P doped g-C3N4 with oxygen vacancies (Ov) for photodegradation of pharmaceuticals: in-situ H2O2 production and plasmon induced stability. Chemsuschem, 2024

[57]

Li J, Chai Q, Niu R, Pan W, Chen Z, Wang L, Wang K, Liu Z, Liu Y, Xiao Y, Liu B. Identification of intrinsic vacancies and polarization effect on ternary Halo-Sulfur-Bismuth compounds for efficient CO2 photoreduction under near-infrared light irradiation. Carbon Energy, 2024, 6 e598

[58]

Zhang Y, Khanbareh H, Dunn S, Bowen CR, Gong H, Duy NPH, Phuong PTT. High efficiency water splitting using ultrasound coupled to a BaTiO3 nanofluid. Adv Sci, 2022, 9 2105248

[59]

Vadivel S, Fujii M, Rajendran S. Novel S-scheme 2D/2D Bi4O5Br2 nanoplatelets/g-C3N5 heterojunctions with enhanced photocatalytic activity towards organic pollutants removal. Environ Res, 2022, 213 113736

[60]

Huang B, Fu X, Wang K, Wang L, Zhang H, Liu Z, Liu B, Li J. Chemically bonded BiVO4/Bi19Cl3S27 heterojunction with fast hole extraction dynamics for continuous CO2 photoreduction. Adv Powder Mater, 2024, 3 100140

[61]

Deng Y, Li J, Zhang R, Han C, Chen Y, Zhou Y, Liu W, Wong PK, Ye L. Solar energy driven photo-thermalcatalytic C-C coupling from CO2 reduction over WO3-x. Chin J Catal, 2022, 43: 1230

[62]

Kim B, Kwon D, Baeg JO, Austeria PM, Gu GH, Lee JH, Jeong J, Kim W, Choi W. Dual-atom-site Sn-Cu/C3N4 photocatalyst selectively produces formaldehyde from CO2 reduction. Adv Funct Mater, 2023, 33: 2212453

[63]

Lazaar N, Wu S, Qin S, Hamrouni A, Sarma BB, Doronkin DE, Denisov N, Lachheb H, Schmuki P. Single-atom catalysts on C3N4: Minimizing single atom Pt loading for maximized photocatalytic hydrogen production efficiency. Angew Chem Int Ed, 2025, 64 e202416453

[64]

Santos Gd, Tian L, Gonçalves R, García H, Rossi L. Boosting CO2 photoreduction efficiency of carbon nitride via S-scheme g-C3N4/Fe2TiO5 heterojunction. Adv Funct Mater. 2025.

[65]

Baran T, Aresta M, Comparelli R, Dibenedetto A. Gas-phase photocatalytic coprocessing of CO2-H2O(v) to energy products promoted by the n,n-Junction In2O3@g-C3N4 under VIS-light. Chemsuschem, 2024, 17 e202400661

[66]

Dong J, Gong Z, Chen Y, Hao G, Zhou W, Li J, Yang M, Deng R, Wang L-N. Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst. Sci China Mater, 2023, 66: 3176

[67]

Zhai Z, Zhang H, Niu F, Liu P, Zhang J, Lu H. Mesoporous carbon nitride with π-electron-rich domains and polarizable hydroxyls fabricated via solution thermal shock for visible-light photocatalysis. ACS Nano, 2022, 16: 21002

[68]

Yang X, Guo Z, Xu Y, Li Z, Zhou Y, Yang Z, Zhou Z, Gao Y, Zhang J. In situ preparation and visible-light-driven photocatalytic degradation performance of nano 3C-SiC@multilayer graphene oxide heterostructure. Chem Res Chinese Univ, 2024, 40: 536

[69]

Thakur S, Ojha A, Kansal SK, Gupta NK, Swart HC, Cho J, Kuznetsov A, Sun S, Prakash J. Advances in powder nano-photocatalysts as pollutant removal and as emerging contaminants in water: analysis of pros and cons on health and environment. Adv Powder Mater, 2024, 3 100233

[70]

Chong W, Meng R, Liu Z, Liu Q, Hu J, Zhu B, Macharia DK, Chen Z, Zhang L. Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv Fiber Mater, 2023, 5: 1063

[71]

Hou Y, Zhou P, Liu F, Tong K, Lu Y, Li Z, Liang J, Tong M. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nat Commun, 2024, 15: 7350

[72]

Huang T, Huang Z, Yang X, Yang S, Gao Q, Cai X, Liu Y, Fang Y, Zhang S, Zhang S. Green and regulable synthesis of CdNCN on CdS semiconductor: atomic-level heterostructures for enhanced photocatalytic hydrogen evolution. Adv Powder Mater, 2024, 3 100242

[73]

Zhang S, Hu J, Shang W, Guo J, Cheng X, Song S, Liu T, Liu W, Shi Y. Light-driven H2O2 production over redox-active imine-linked covalent organic frameworks. Adv Powder Mater, 2024, 3 100179

[74]

Liu J, Li X, Han C, Liu M, Li X, Sun J, Shao C. Hetero-janus nanofibers as an ideal framework for promoting water-pollutant photoreforming hydrogen evolution. Energy Environ Mater, 2023, 6 e12404

[75]

Zoubi WA, Mahmud AA, Hazmatulhaq F, Thalji MR, Leoni S, Kang J-H, Ko YG. Origin of the synergistic effects of bimetallic nanoparticles coupled with a metal oxide heterostructure for accelerating catalytic performance. SusMat, 2024, 4 e216

[76]

Cai Y, Xiao F-X. Revisiting MXenes-based photocatalysis landscape: progress, challenges, and future perspectives. Acta Phys Chim Sin, 2024, 40 2306048

[77]

Yang S, Lu L, Li J, Cheng Q, Mei B, Li X, Mao J, Qiao P, Sun F, Ma J, Xu Q, Jiang Z. Boosting hydrogen peroxide production via establishment and reconstruction of single-metal sites in covalent organic frameworks. SusMat, 2023, 3: 379

[78]

Ma X, Li S, Gao Y, Li N, Han Y, Pan H, Bian Y, Jiang J. S-scheme heterojunction fabricated from covalent organic framework and quantum dot for enhanced photosynthesis of hydrogen peroxide from water and air. Adv Funct Mater, 2024, 34: 2409913

[79]

Cirena Z, Nie Y, Li Y, Hu H, Huang X, Tan X, Yu T. Fe doped g-C3N4 composited ZnIn2S4 promoting Cr(VI) photoreduction. Chin Chem Lett, 2023, 34 107726

[80]

Azizar GAB, Hong J. Optimizing intrinsic cocatalyst activity and light absorption efficiency for efficient hydrogen evolution of 1D/2D ReS2-CdS photocatalysts via control of ReS2 nanosheet layer growth. J Mater Sci Technol, 2024, 168: 103

[81]

Tang Y, Xu Z, Sun Y, Wang C, Guo Y, Hao W, Tan X, Ye J, Yu T. Simultaneous and efficient utilization of photogenerated electrons and holes: a case of single-atom Pd-anchored CdS twins. Energy Environ Sci, 2024, 17: 7882

[82]

Xiao Q, Liu T, Zhou Q, Li L, Gao D, Li D, You F, Chang C. Nanostructured ZnO/ZnS with type-II hetero-junction for efficient CO2 photoreduction. Chem Res Chin Univ, 2024, 40: 484

[83]

Niu J, Wang L, Meng X, Li C. Preparation of Mo-Zn0.5Cd0.5S@NiCo2S4 doped-heterojunction system and its bifunctional photocatalytic performance. J Liaocheng Univ Nat Sci Ed, 2024, 37: 36-45

[84]

Wang C, You C, Rong K, Shen C, Fang Y, Li S. An S-scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta Phys-Chim Sin, 2024, 40 2307045

[85]

Yuan S-X, Su K, Feng Y-X, Zhang M, Lu T-B. Lattice-matched in-situ construction of 2D/2D T-SrTiO3/CsPbBr3 heterostructure for efficient photocatalysis of CO2 reduction. Chin Chem Lett, 2023, 34 107682

[86]

Chen JX, Lin LC, Lin PL, Xiao LJ, Zhang LQ, Lu Y, Su WY. A direct Z-scheme Bi2WO6/La2Ti2O7 photocatalyst for selective reduction of CO2 to CO. Chin J Struct Chem, 2023, 42100010

[87]

Rocha GFSR, Silva MARD, Rogolino A, Diab GAA, Noleto LFG, Antonietti M, Teixeira IF. Carbon nitride based materials: more than just a support for single-atom catalysis. Chem Soc Rev, 2023, 52: 4878

[88]

Nagella SR, Vijitha R, Bandameeda RN, Rao KSVK, Chang-Sik H, Venkateswarlu K. Benchmarking recent advances in hydrogen production using g-C3N4-based photocatalysts. Nano Energy, 2023, 111 108402

[89]

Chen J, Bai P, Yuan S, He Y, Niu Z, Zhao Y, Li Y. LSPR-assisted W18O49/ZnO S-scheme heterojunction for efficient photocatalytic CO2 n-formylation of aniline. Chin J Catal, 2024, 67: 124

[90]

Dutta V, Sudhaik A, Raizada P, Singh A, Ahamad T, Thakur S, Le QV, Nguyen V-H, Singh P. Tailoring S-scheme-based carbon nanotubes (CNTs) mediated Ag-CuBi2O4/Bi2S3 nanomaterials for photocatalytic dyes degradation in the aqueous system. J Mater Sci Technol, 2024, 162: 11

[91]

Shen X, Yu Z, Yang Y, Feng Q, Yang S, Liu S, Shan S, Xue Q. Visible-NIR responsive Ag2O couple with MIL-53(Fe) on CS as S-scheme photocatalyst for efficient simultaneous removal of Cr(VI) and norfloxacin. Chem Eng J, 2024, 498 155201

[92]

Su P, Yu J, Deng P, Qu D, Liang T, Zhao H, Yang N, Zhang D, Ge B. Construction of 0D/1D Cd0.5Zn0.5S/VO2 S-scheme heterojunction for visible light photocatalytic hydrogen generation via water splitting. J Liaocheng Univ Nat Sci Ed, 2024, 37123

[93]

Li S, You C, Rong K, Zhuang C, Chen X, Zhang B. Chemically bonded Mn0.5Cd0.5S/BiOBr S-scheme photocatalyst with rich oxygen vacancies for improved photocatalytic decontamination performance. Adv Powder Mater, 2024, 3 100183

[94]

Ma D, Xue Q, Liu Y, Liang F, Li W, Liu T, Zhuang C, Zhao Z, Li S. Manipulating interfacial charge redistribution in Mn0.5Cd0.5S/N-rich C3N5 S-scheme heterojunction for high-performance photocatalytic removal of emerging contaminants. J Mater Sci Technol, 2026, 243: 265

Funding

National Natural Science Foundation of China(U1809214)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

/